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Abstract. This paper defines a class of “TCP-like” transport protocols, called protocols in the TCP
Paradigm. The name indicates the protocols are not TCP, but in some sense similar to it.

The class includes TCP and also Tom Kelly’s “Scalable TCP”, and more. Most of the protocols in the
class require ECN in order to become implementable. Most even require a form of ECN that allows a high
rate of marked packets.

The paper analyzes performance of protocols in the TCP Paradigm and indicates a subset that is likely
to perform as well as, or quite possibly better than, Scalable TCP. Criteria are the ability to achieve high
throughput, to maintain a steady flow if the ECN marking probability is constant, and to adapt quickly to a
changing marking probability.

A main conclusion is that in order to benefit from protocols in this paradigm, “source behavior” (reac-
tion of endpoints to marked and unmarked packets) and “router behavior” (how routers choose marking
probabilities) must be investigated together.
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protocols

1. Introduction

This is a re-write of the paper [46] which has existed on the web since 1999 and was
presented in a workshop at ENS, Paris, Sept 2000, but which has not appeared in the
open literature yet. It has been rewritten to reflect changes since 1999. Some new results
have been added, in particular in Sections 8 and 9.

The paper [46] was a natural extention of the paper [50] which existed on the
web since 1996 and was presented in an informal workshop of the IFIP Working Group
WG7.3 during Performance, 96 in Lausanne, in Oct 1996, and also in DIMACS work-
shop in Nov 1996. Also that paper has not been published in the open literature, yet. It
started an avalanche of papers of which [51] is the best known.

Consider a flow of packets in IP with per packet acknowledgement. Assume the
system allows “Explicit Congestion Notification” (ECN, see e.g. [25,59]): When a router
recognizes one of its buffers is getting close to congestion, it can set a “Congestion Indi-
cator Bit” in packets flowing through this buffer. To avoid confusion with the similarly
named bit in ATM with ABR, Floyd and Ramakrishnan call this the “Congestion Expe-
rienced” (CE) bit, or, more accurately, the CE Codepoint (two bit-pattern) (1,1). In this
note we use that name (CE), but make different use of the “CE bit pattern” and simply
call it the CE bit. Setting of the CE bit can be done probabilistically, with a probabilityp
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that depends on the perceived level of congestion. The destination copies those CE bits
into the ECN-Echo bit in acknowledgements. Thus, the source is informed of conges-
tion. [25] and [59] discuss a number of implementation issues, such as location of the
bit and what to do when there are delayed acknowledgements.

When the router sets the CE bit in a packet, we also say it marks the packet. The
router can (for example) choose a state-dependent probabilityp and mark packets with
probabilityp.

[25] and [59] repeatedly state the opinion that the source of traffic must react to
a returning ECN-Echo bit that has been set (=1) in (almost) exactly the same way a
TCP source reacts to discovering a “congestion event” that includes loss of at least one
packet.

This is an opinion the author of this note does not share.
Among the advantages of marking instead of dropping (as in RED) are (i) that

no re-transmission is needed, and unlike in case of drop there is no period of about 1
RTT of duplicate acknowledgements, with possible confusion about further dropped
packets, and therefore (ii) any marking probability 0≤ p ≤ 1 is acceptable. Drop
probabilities have to be at most not much more than .1, or (for example) TCP stops
functioning, see e.g. Appendix B in this paper. In addition, modern traffic endpoints
(sources, destinations) have the ability to interprete the meaning of a stream of ECN-
Echo bits quite carefully, and for example as a function of the type or class of service
the packets belong to. The author of this note advocates that ECN-capable flows react
to ECN-Echo bits in ways that still need to be defined and that may be quite different
from the way a non ECN-capable flow reacts to dropped packets. In this paper we often
use the terms “ECN savvy” and “ECN illiterate” instead of “ECN-capable” and “non
ECN-capable”.

Unfortunately, the authors of [25] and [59] chose an implementation of ECN
that makes it impossible to signal congestion more than once every RTT: Once the
“destination” receives a packet with the CE codepoint set, it sets the ECE bit in all
packets in the opposite direction, until it gets a packet with the CWR bit set, i.e. for
about 1 RTT. While this gives protection against lost packets with the ECE flag set, it
significantly reduces the flexibility on the feedback mechanism, as will be shown at the
end of Section 2.

Later in this paper a number of arguments will be given that indicate that having
a wider range of possible marking probabilities improves controlability of the network.

This paper thus, among other items, proposes to modify the ECN implementation,
enabling and even encouraging a higher marking probability for ECN savvy flows than
drop probability for ECN ignorant flows.

In the simplest situation the intent is to create a situation where ECN savvy flows
and ECN ignorant flows, following the same path through the network, can have strongly
dissimilar marking probability, respectively drop probability, yet (for fairness) see sim-
ilar or at least not too dissimilar performance. If the marking probability of ECN savvy
flows is higher than the drop probability of ECN ignorant flows, and if the goal is to
have the various flows obtain similar congestion windows, the ECN savvy flows must
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react differently to marking than the ECN ignorant flows react to drop. This limited
use of ECN, if well-designed, should lead to better controlled traffic, in particular if the
fraction of ECN savvy traffic increases.

In a multi-class situation (e.g. Differentiated Services) the goal may in fact be to
achieve differentiation in the performances seen by different flows. In the discussion
below we have one class of ECN ignorant flows and potentially multiple classes of ECN
savvy flows.

Thus, a challenge is to create source behaviors (how sources react to drop or
marking) and router behaviors (how routers decide which packets to drop or mark) that
achieves the goal of appropriate (dis)similarity in performance encountered.

For the sake of simplicity of language we will often pretend that “router behavior”
is defined simply in terms of state dependent drop- and marking probabilities, that is,
a drop probability and a number of marking probabilities (one for every class of ECN
savvy flows) that are functions of the current and recent congestion as seen by the router,
e.g. as in RED functions of output buffer occupancies. Actual router behavior may be
more complicated. For example, we will see that under certain circumstances routers
may decide to alternate high and low levels of drop probability, instead of having a closer
to constant drop probability. Routers also may decide to temporarily overshoot a target
drop probability in order to force flows to quickly adapt to changing circumstances.
These ideas are not further developed in this paper.

The marking probability for ECN-capable flows may depend on the type (type
of service, priority class, etc.) of the packet. Thus, the router has a number of state
dependent “signaling congestion” variables: The drop probability for ECN non-capable
flows; the drop probability for ECN-capable flows (might be class dependent); and the
marking probability for ECN-capable flows (might be class dependent). For example,
for flows with a guaranteed rate (and that stay within their rate) it makes no sense to drop
unless there is no choice, and it makes no sense to mark apart from as a warning signal
that involuntary drop is imminent. Similarly, if in IP there is an option of distinguishing
between “In-Rate” and “Out-of-Rate” packets (or “In-Profile” versus “Out-of-Profile”
packets, using an “In-Rate” bit), “In-Rate” packets would be dropped only involuntarily,
and would be marked only as a warning that involuntary drop is imminent. “Out-of-Rate”
packets could be dropped as well as marked, with marking of course the preferred option.
This implies that the signalling (e.g. carried by acknowledgements) from destination to
source must separately signal markings of In-Rate and of Out-of-Rate packets. This
router behavior is illustrated in Table 1.

This use of different marking and/or dropping probabilities for different types of
flows is further illustrated in the Sections 2 and 3.

In the foreseeable future, ECN-capable routers would set drop probabilities for
ECN non-capable flows in a way consistent with RED or SRED or some such mech-
anism. ECN capable flows would react to drop in essentially the same way as ECN
non-capable flows. This is necessary, because for some time there would be ECN-
capable as well as ECN non-capable routers. Some changes would be allowed for spe-
cial classes (say flows paying a “premium” tariff). ECN-capable routers could set the
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Table 1
Marking and dropping probabilities.

Class Marking Dropping

Non-ECN 0 pn,d
ECN Class 0 p0,m p0,d

...
...

...
ECN Class L pL ,m pL ,d

marking probability for ECN-capable flows in just about any way, as long as Router Be-
havior and Flow Behavior are designed together. Some indication of the consideration
going into Router Behavior can be found in the Sections 3 and 5.

Making sure that those new (marking) behaviors have been studied and imple-
mented in (some) routers before many end-stations become ECN capable may very well
be the only way to make an elegant transition to a new environment.

Once ECN is ubiquitous, at least in routers, (endstations may take longer!) the
meaning of drop for ECN-capable flows in theory could still change. This would be a
hard transition to make and might very well be impossible, because by that time there
will be many ECN-capable endstations that can not make a synchronized change. By
that time, the only way to achieve change might be by introducing new classes.

Thus, the advent of ECN is an opportunity to modify the congestion algorithms in
IP. We should use this opportunity to study Router Behavior (whether and when to mark
packets) and Source Behavior (how to react to marked and unmarked packets) as two
aspects of the same problem. The advent of ECN temporarily gives us a clean slate that
we can fill in with new mechanisms, using what we have learned in the past 20+ years,
and taking into consideration the greater capabilities in modern endstations, and the
much higher bandwidths in the modern Internet. Since this is likely the last opportunity
to do a significant amount of redesign of the control mechanisms, it is important to use
the opportunity well!

In much of this paper we do a “quasi-stationary” analysis of the performance of
“TCP-like” flows under the assumption of constant marking probabilitypmark (or con-
stant drop probabilitypdrop) and obtain information about stationary distributions of
congestion windows etc. To study “controllability” of flows under changing circum-
stances, we need to study transient behaviors. This is done in [48]. Some results from
that paper are used in Section 9 to predict how fast a flow will adapt when a router
changes the drop probability.

In future work we expect to use the insight gained in this paper, and in [47–49]
and other work in progress, to propose router behaviors, i.e. ways for routers to decide
whether and when to mark packets. That will include, but go beyond, simply setting
state dependent marking probabilities.

Apart from small detours in the Sections 3 and 5 we do, in this note, not yet
consider class dependent marking. In particular we do not yet consider separate marking
policies for In-Rate and Out-of-Rate packets. Mechanisms where “entry-routers” or
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“edge-routers” mark packets as either In-Rate or Out-of-Rate, where other routers have
different marking policies for such packets, and where the reaction of sources to marked
packets depends on whether the packets were In-Rate or Out-of-Rate look like a very
promising area of future research.

In Section 2 a general class of “source behaviors” will be defined. In Section 5
this class will be restricted to a class which still contains “classical” TCP as well as
“Scalable TCP”, see [32], and many of the behaviors described in [11]. In later sections,
the performance of these behaviors is analyzed. For the time being, “Scalable TCP”
comes off as an attractive candidate. There are, however, other candidates with at least
in theory more attractive high-performance behavior.

It must be noted that Tom Kelly’s “Scalable TCP”, [32], is quite different from
Robert Morris’ “Scalable TCP”, [45]: The first is on how TCP sources ought to react to
dropped or marked packets, the second is on how routers ought to choose buffer sizes.

The most promising candidates for “source behavior” will be discussed in Section
11.

The analyses done in this note are examples of the analyses that should have been
done before a newly designed ECN was finalized. There is no pretension of having
achieved closure. The most important recommendation is that Router behavior and
Source behavior must be designed together and must be class dependent, i.e. depend on
the class of the packet.

2. The TCP Paradigm with general increases and decreases

Let us consider a Congestion Window based protocol where whenever an acknowl-
edgement arrives at the source that acknowledges an unmarked data packet while the
congestion window isW, then the congestion window increases byincr(W), and when
a marked packet is acknowledged the congestion window decreases bydecr(W). (Also,
when a packet is marked while theW is small there will be a time-out, with time-outs
probably increasing exponentially after repeated such markings. We do not consider
such details in this note.) At this point it does not matter whetherW is expressed in bytes
or in MSSs or in some other entity. Assuming packets are marked with probabilityp,
and that “locally in time”p is constant, the drift per packet in the congestion window
while the congestion window isW is

E[Wn+1 −Wn|Wn = W] = drift(W, p) = (1 − p).incr(W) − p.decr(W)

= p.incr(W).

(
1 − p

p
− decr(W)

incr(W)

)
. (2.1)

Let us now consider the function

q(W) = decr(W)

incr(W)
. (2.2)
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Assuming this function is reasonably smooth, and thatp indeed is constant during
a large number of packets sent, the congestion window will tend to spend most of its
time atW values for whichq(W) is not too far from1−p

p .

Common sense indicates that higherpmust indicate a lower target value forW. It
therefore is highly desirable thatq(·) is a strictly increasing function with

q(1) = 0, lim
W→∞

q(W) = ∞. (2.3)

In that case, if the marking probabilityp is constant,q(W) will fluctuate around1−p
p .

Thus we can predict the average window size: findW(p) with

q(W(p)) = 1 − p

p
. (2.4)

Equation (2.3) ensures that (possibly with interpolation or rounding to an inte-
ger) there always is a solution to (2.4). The actual window size will tend to fluctuate
aroundW(p). We useW(p) as approximation for the average. The functionsq(W)
andW(p) really are response surfaces of the sources to drop- or marking probabilities
p.

It is useful to note here a connection with “fairness”: In the situation of (2.3),
if two different flows that react in the same way to packet markings encounter the
same marking probabilityp, they will tend to have the same (average) congestion
windows.

Note that if the functionq(·) is almost constant over a long range ofW values, we
do not have fairness: if for a while1−p

p happens to remain constant, equal to thatq(W)
value, and two flows start with differentW values in that range ofW values, they will
tend to keep their different congestion windows for a long time.

In the special case of TCP (without delayed acknowledgements, and dropping
instead of marking) we have (congestion windows are now measured in MSSs):

incr(W) = 1

W
,decr(W) = W

2
, (2.5)

and thus

q(W) = W2

2
, W(p) =

√
2(1− p)

p
. (2.6)
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This is the basis for the celebrated square root formula, see e.g. [50]. With Delayed
Acknowledgements a better formula is

W(p) =
√

1 − p

p
(2.7)

and often 1− p is approximated by 1, see [50,51] for details and refinements.
The functionq(·) defines a “response surface” ofW to p. We see that we can first

chooseq(·) arbitrarily (subject to the monotonicity and (2.3)), and then still can choose
incr(·) anddecr(·) somewhat arbitrarily. Thus we have a choice of two modi operandi:
we can chooseincr(·) anddecr(·) functions and find out what he resulting response
surface is, or we can choose a response surface and then (with that degree of freedom
gone) findincr(·) anddecr(·) functions.

If we decide to first choose the response surfaceq(W), (or W(p)), we can go
one step further: after choosing this response surface we do not chooseincr(·) and
decr(·), but we let the source directly estimate the marking probabilityp, and adjust
the congestion windowW accordingly. This method has interesting consequences, that
will be investigated in Sections 12 and 13. In fact, under certain circumstances it leads
back to a system withincr(·) anddecr(·) functions as above. Thus, it can be seen as a
somewhat scientific way of choosing such functions.

For TCP, the desire to have multiplicative decrease governed the choice ofdecr(·).
This led to the somewhat unfortunate result that the congestion window occasionally
halves. For connections with a long round trip time that therefore need a high congestion
window this is a problem: after a halving of the congestion window, the congestion
window increases quite slowly. This has a number of unfortunate consequences. One of
these is that TCP traffic is not very good “background” traffic for other streams.

Choosing bothdecr(W) and incr(W) much smaller (but leaving the quotient the
same) has the advantage that withpconstant a flow following that behavior has the same
averageW value but behaves much more smoothly. This can have the disadvantage that
the flow reacts quite slowly to changingp. However, we will see that this disadvantage
is greatly reduced, or eliminated, if ECN is used with the ability to effectively set the
marking probabilityp very high.

It must be noted that not all versions of TCP are consistent in using multiplicative
decrease. Many versions of TCP allow the window to be halved only once in a round
trip time or only once per congestion episode.

It must also be noted that as long as the marking probabilityp is enabled to
effectively take on high values, e.g. close to one or even equal to one, quite small values
of decr(w) still effectively allow multiplicative decrease:

In the extreme we could usedecr(W) = d (MSSs) (with 0< d < 1) in a scheme
with marking instead of dropping. In that case, settingp = 1 during one round trip
time (or, in case of delayed acknowledgements during two round trip times) reduces
all windows (for flows with that RTT!) to a fraction (1− d) of the value before that
period (or possibly to 1 MSS or less, time-out counting as a congestion window of
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less than one MSS): if .5< d < 1 more draconic than halving all windows! Thus,
because a marked packet is not lost (with all the unpleasant consequences of losing a
packet), it is possible to send a strong signal by marking many packets in a short period.
Choosingd = 1,decr(W) = 1, has the additional effect that acknowledgement of a
marked packet does not cause transmission of a new packet. Thus, the router can fairly
accurately predict the consequences of marking a packet. With multiplicative decrease,
the router needs to “know” the window size to predict the consequences of marking a
packet.

Another interesting side-effect of choosingdecr(w) = d is that in some cases
(repeated short periods of highp) it gives a bias in favor of flows with long RTT, thus
possibly counteracting the usual bias against flows with long RTT. This is an aspect of
router behavior that needs further study.

Of course, a larger value ofdecr(w), for exampledecr(w) = c2
√

w (see Section
5) will decrease or eliminate the congestion window in an even shorter amount of time.

It must be noted that the current implemetation of ECN as in [59] makes it impos-
sible to set the marking probability effectively higher thanp = 1

W , where of courseW
is the congestion window in MSSs.

3. Fairness and TCP friendliness

A modification of router-and endpoint behavior as above risks leading to a “less than
TCP friendly” situation. The NSF report [19] states that insisting on “TCP Friendliness”
is freezing further Internet protocol development and recommends to stop making a big
point of TCP friendliness.

Of course, when TCP friendliness can be achieved at low cost, an attempt should
be made. It is quite possible that the new behaviors advocated can in fact achieve some
kind of TCP friendliness:

When multiple differentincr anddecr functions are used, and routers have “class
dependent” dropping and marking policies, we can aim to maintain certain relationships
between the “typical” congestion windows of different classes. For example, we can
aim to maintain a specific ratio. That ratio can be 1: for example, there may be a state
dependent drop probabilitypdrop for “best effort, ECN illiterate” TCP flows and a state
dependentpmark for “best effort, ECN savvy” TCP flows. In that case we want the drop
policy (pdrop as function of the level of congestion) and the marking policy (pmark as
function of the level of congestion), and theincr anddecr functions for the different
flows, to be such that with plausible accuracy, most of the time,pdrop and pmark are
related in such a way that

Wdrop(pdrop) = Wmark(pmark), (3.1)

where of courseWdrop (·) is obtained as in (2.4) fromqdrop (W) = decrdrop (W)/ incrdrop
(W), similar for the case of marking. This makes it possible to compute (e.g.)pdrop as
function of pmark−, andpmark we let depend in one of the usual ways on the perceived
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level of congestion in the router. An example is given in (5.10) in this paper. This
mechanism was used in a few special cases in [40] and in [41].

Maintaining such a relationship between various drop- and marking probabilities
will be sufficient to ensure relative fairness between the “ECN savvy” and “ECN il-
literate” flows as long as the dropping and marking probabilities change only slowly
(the “quasi-stationary” approach works). It is an interesting problem to find out what
happens in case of a very dynamic situation.

4. Outside the TCP paradigm

In the previous section we had, as in TCP,incr (·) anddecr(·) functions, and (in prin-
ciple) a congestion window modification is made every time the source receives an
acknowledgement, and the update uses theincr (·) anddecr(·) functions. We call this
situation the “TCP Paradigm”. There are of course more general mechanisms. For ex-
ample, the source could count “marked” and “unmarked” acknowledgements, and every
now and then (say once every Round Trip Time RTT) update the congestion window.
Such mechanisms are outside the TCP Paradigm.

Mechanisms “on the boundary of” the TCP Paradigm are for example those dis-
cussed in Section 12, where a “response surface”q(·),W(·) as in (2.3), (2.4) has been
chosen, an estimatēp for the marking probabilityp is maintained, and the conges-
tion window actually used isW( p̄). Such a scheme was already referred to in Section
2. In Section 13 a very interesting such mechanism will be described, of which we
then find that it can be implemented in two different ways: one mechanism inside the
TCP Paradigm, the other outside. This can be seen as a “scientific” way of choosing
incr (·),decr(·).

More research is needed to check whether there are pairs of router behavior–
endstation behavior outside the TCP Paradigm that are superior to all mechanisms inside
the TCP Paradigm.

5. A special class ofincr (·) and decr(·) functions

In the remainder of this note we restrict ourselves toincr (·) anddecr(·) of the form

incr (w) = c1w
α,decr(w) = c2w

β. (5.1)

Similar functions have been studied in [11]. For these functions to make sense we
obviously wantα < 1, c1 > 0 andβ ≤ 1, c2 > 0, and if β = 1 we clearly need
0 < c2 < 1.

In this Section and in the next few Sections we investigate the behavior of conges-
tion control mechanisms based onincr (·) anddecr(·) functions as above. In Section 11
we draw some conclusions on what values are promising.
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Throughout most of this note we consider generalα andβ etc. Many of the results
in this section can be extended to more generalincr (·) anddecr(·) functions. At this
point that is an exercise of limited interest.

It must be noted that the combination (α = −1, β = 1) is TCP, and is usually called
“AIMD” (Additive Increase, Multiplicative Decrease), see e.g. [11]. The combination
(α = 0, β = 1) is called “MIMD”, this is what Tom Kelly [32] with good reason calls
“Scalable TCP”. That may very well be the best combination. However, there are some
other extremely interesting possibilities, see Section 11.

With the choice ofincr (·) anddecr(·) functions as above, from a mathematical
point of view we are studying the processWp,n defined by:

Let the random variables (χp,n)∞n=0 be iid, with

P{χp,n = success} = 1 − p, P{χp,n = failure} = p, (5.2)

where of course 0< p < 1.χp,n = success means that then-th packet was unmarked,
andχp,n = failure means that then-th packet was marked.

Further, let the discrete time, continuous state space processWp,n (n = 0, 1,

2, . . . , 0 < Wp,n < ∞, 0 < p < 1) be defined by

Wp,n+1 =
{
Wp,n + c1Wα

p,n if χp,n = success,

Wp,n − c2W
β
p,n if χp,n = failure,

(5.3)

To make sure of no problems atWp,n = 0 if α > 0 or β < 1 (or both), we add
in those cases a lower boundWp,n ≥ 1. In those cases, if at some point (5.3) causes
Wp,n+1 < 1,Wp,n+1 is immediately (or after an ensuing time-out ends) reset to 1.

Henceforth we always writeχn andWn for χp,n andWp,n. It must be remembered,
in particular in Section 9, that the subscriptp really is there.

With the choice of functions as in (5.1) we get the response surface

q(w) = decr(W)

incr (W)
= c2

c1
wβ−α. (5.4)

Thus, for packet marking probabilityp constant, and marking independent from packet
to packet, when transporting a very big file the congestion window will tend to fluctuate
aroundw(p), defined as

w(p) =
(
c1

c2

1 − p

p

) 1
β−α

. (5.5)

Whenp is quite close to zero, (5.5) becomes

w(p) =
(
c1

c2p

) 1
β−α

. (5.6)



TRANSPORT PROTOCOLS IN THE TCP PARADIGM AND THEIR PERFORMANCE 361

If we choose that “more marking signals more congestion” (if we chooseW(p) to
be decreasing inp) we must haveα < β ≤ 1. This achieves (2.3). It also means that for
p small the lower bound following (5.3) is no more than a mathematical convenience.

While from a mathematical point of view we are studying the processWn as in
(5.3) we must never forget that the real objects of study are the protocols it is related to.

The main weakness of the processWn as model for a transport protocol in the
TCP paradigm is that it does not include consideration of the delay in the feedback (of
1 RTT).

In addition, practically, when the congestion window is small the protocols will
have different behaviors than indicated by (5.3). Equation (5.3) is likely to mainly
describe behavior for largeWn (the high performance situation).

In classical TCP we hadc1 = 1, α = −1, c2, = 1
2, β = 1.

For the special class of functions considered in this section, the constraint (3.1)
becomes more tractable. Let the “ECN savvy” flows useαm, βm, c1m, c2,m and let the
“ECN illiterate” flows useαd, βd, c1,d, c2,d. We can letpdrop depend on the perceived
level of congestion, then letpmark be the function ofpdrop that satisfies

(
c1,d

c2,d

1 − pd
pd

) 1
βd−αd =

(
c1,m

c2,m

1 − pm
pm

) 1
βm−αm

(5.7)

Slightly less accurate, but possibly more convenient, would be

(
c1,d

c2,d

1

pd

) 1
βd−αd =

(
c1,m

c2,m

1

pm

) 1
βm−αm

(5.8)

(5.8) makes it attractive to consider the situation whereβd −αd = βm−αm. In that case
we could choose

pm = c1,mc2,d

c2,mc1,d
pd. (5.9)

However, in all likelihoodβd − αd = 2, and we will see that almost certainly in any
intelligently chosen set-upβm − αm ≤ 1. So, (5.9) is just too simple to wish for.

From the point of view of implementability it may be preferable to makepm the
variable directly determined by the perceived level of congestion, and setpd equal to

pd = c1,d

c2,d

(
c2,m

c1,m
pm

) βd−αd
βm−αm

, (5.10)

with for example

c1,d

c2,d

(
c2,m

c1,m

) βd−αd
βm−αm

< 1. (5.11)
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(5.11) guarantees thatpd < 1 even whenpm = 1. If perceived congestion grows beyond
the point wherepm = 1 the router could further increasepd. It must be remembered,
though, that for TCP settingpd ≥ .1 essentially causes the TCP flow to become ex-
tremely erratic, and to almost disappear, see Appendix B.

Henceforth we have only one set of functions at a time.
In order to study behavior of the functions above with constant marking probability

p, we study the evolution ofWn as a stochastic process. Using the same ideas as in [50]
we get the following results:

Theorem 1. If

α < β = 1, c1 > 0, 0 < c2 < 1, (5.12)

then forp ↓ 0 the process (X(t))0≤t<∞ defined by

Xp(t) = p
(
W� t

p �
)1−α

(5.13)

approximately behaves as the processX(t) defined by: there is a Poisson Process with
intensity 1. In-between the points of the Poisson Process,

d

dt
X(t) = c1(1 − α), (5.14)

and in the points of the Poisson Process (say pointτ ) we have

X(τ+) = (1 − c2)
1−αX(τ−). (5.15)

For a discussion of why this result is “obvious”, see [47,50].
The reader will notice that the “theorem” above leaves open the question of exactly

in what sense the processesXp(·) become similar to the processX(·).
Weak convergence of the processesXp(.) to the processX(.) (weak convergence of

all finite dimensional distributions) has not been proven in this paper. It was conjectured
by the author of this paper and has recently been proven by Jason Swanson [54]. The
construction of the processes in [47,50] indicates the similarity is strong even forp not
terribly small.

In Section 9 we will use the fact, not yet proven, that the relaxation times of the
processesXp(·) converge to the relaxation times of the processX(·), or at least have the
same order of magnitude.

Finally, in [47] it is proven that ifβ = 1, then for all−∞ < α < 1 = β

the stationary distributions of the processesXp converge, forp ↓ 0, to the stationary
distribution of the processX(t), and the rate of convergence is given. In the original
version of [47] this result was proven only for−∞ < α ≤ 0. The extension to 0< α < 1
was added in the modified version of [47]. Common sense and the rate of convergence
results also indicate the approximation is quite good even ifp is not really small. Of the
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two ways we wantXp(·) to be similar toX(·) the one that is usually hardest to prove,
and the two that are of most importance in this paper thus have been proven.

It is convenient to define

c = (1 − c2)
(1−α) (5.16)

(so that 0< c < 1) and to also introduce the processZ(t) defined by

Z(t) = X(t)

c1(1 − α)
(5.17)

for which of course

d

dt
Z(t) = 1 (5.18)

“in between” the pointsτ of the Poisson Process, and

Z(τ+) = cZ(τ−) (5.19)

“in” the pointsτ of the Poisson Process. The stationary distribution of the processZ(t)
(and thereby of the processX(t)) was derived in [50]. It has the form

Z =
∞∑
k=0

ckEk, (5.20)

where (EK )∞k=0 are independent, identically distributed random variables, all exponen-
tially distributed with expected value 1. The distribution of this infinite sum of random
variables, including all its moments, was described in detail in [50]. For example, we
have for all realµ

E[Zµ] = �(µ + 1)
∞∏
k=1

(
1 − cµ+k

1 − ck

)
. (5.21)

In particular (as is easier seen directly!)

E[Z] = 1

1 − c
, Var(Z) = 1

1− c2
, (5.22)

and therefore

Coeff·Var(Z) = st.dev(Z)

E[Z]
=

√
1 − c

1 + c
. (5.23)

Thus, we know that the stationary distribution of the congestion window approxi-
mately has the form

W = p− 1
1−α (c1(1 − α)Z)

1
1−α . (5.24)
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Possibly a more interesting way of stating the same result is that (p
c1

)
1

1−αW has a distri-
bution approximately independent ofp andc1: it approximately has the form

(
p

c1

) 1
1−α

W = ((1 − α)Z)
1

1−α (5.25)

That stationary distribution, including all its moments, therefore is explicitly
known. Among other results, we have

E[W] ∼ p− 1
1−α (c1(1 − α))

1
1−α E[Z

1
1−α ], (5.26)

coeff·var(W) = st.dev(W)

E[W]
∼ coeff·var(Z 1

1−α ), (5.27)

approximately independent ofp andc1.
This leads to a clean expression forCoeff.Var(W) only if α = −1 or α = 0. If

α = 0 we get

Coeff·Var(W) ∼
√

c2

2 − c2
. (5.28)

An expression forCoeff.Var(W) if α = −1 can be found in [50].
It is an interesting excercise to compare the approximation toE[W] in (5.26) with

W(p) as obtained from (2.4), (5.5) etc.
A lot is known about the transient behavior of the processZ(t) in (5.17), see [48].

In Section 9 some of this will be used to predict how fast the congestion windowWn

reacts when the marking probabilityp changes (in the caseβ = 1).
For the caseβ = 1 we have provable limit results as above. For the case 0≤ β < 1

(and of course stillα < β) we get a different limiting process ifp ↓ 0.
With the rescaling as below, all jumps become (relatively) very small. In the limit

for p ↓ 0 we get continuous sample paths. Also, for the rescaled process the drift toward
the likely center of the stationary distribution becomes linear in the distance from that
center, and the “dispersion” becomes almost constant over a wide region: This is strong
evidence (almost a mathematical proof!) that in the limit the process below behaves
like an Ornstein–Uhlenbeck process. It must be noted that weak convergence has been
proved for neither process nor stationary distribution. The evidence is strong enough to
demand further research. In fact, in an industrial environment the evidence would be
strong enough to base engineering decisions on.

Conjecture. If

α < β < 1, c1 > 0, c2 > 0, (5.29)
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then forp ↓ 0 the process (Xp(t))0≤t<∞ defined by

Xp(t) = pν1

(
W� t

pν2 � −
(
c1(1 − p)

c2p

) 1
β−α

)
, (5.30)

with

ν1 = (1 + β)

2(β − α)
, ν2 = 1 − α

β − α
, (5.31)

becomes the Ornstein–Uhlenbeck process with local drift

E[X(t + �) − X(t)|X(t) = x] = −�.x.(β − α)c
− 1−β

β−α

1 c
1−α
β−α

2 + o(�)(� ↓ 0), (5.32)

and local dispersion

Var(X(t + �)|X(t) = x] = �.c
2β

β−α

1 c
− 2α

β−α

2 + o(�)(� ↓ 0), (5.33)

i.e. the stochastic processX(t) defined by the stochastic differential equation

dX(t) = −µX(t) + σdB(t) (5.34)

with

µ = (β − α)c
− 1−β

β−α

1 c
1−α
β−α

2 , σ = c
β

β−α

1 c
− α

β−α

2 , (5.35)

and whereB(·) is standard Brownian Motion.µ > 0 is called the drift parameter and
σ 2 is the dispersion.

As in the case of Theorem 1, we should define what we mean by “becomes”.
Weak convergence of the processesXp(.) to the processX(t) has not been proven

in this paper. It was conjectured by the author of this paper and has recently been
proven by Jason Swanson [54]. In this case there is a major question of the rate of
convergence whenp ↓ 0: How small mustp be before the limiting process becomes a
good approximation? Berry-Esseen type results are likely to answer this question.

Convergence of relaxation times has not been proven, and will be used anyhow
in Section 9. Intuitively this “must be true”, and in fact the only requirement is that
relaxation times of the processesXp remain of the order of magnitude of the relaxation
time of the limiting process.

In this caseβ < 1 there is no proof yet of convergence of stationary distributions.
Intuitively, this “must be true”, but a formal proof might be quite hard, and obtaining a
rate of convergence result might be even harder.

A nice source of information on the Ornstein–Uhlenbeck process (5.34) is [23].
Among other things, it shows that the stationary distribution of the processX(t) in (5.34)
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is the normal distribution with mean zero and variance

Var(X) = σ 2

2µ
= c

1+β

β−α
−

1 c
1+α
β−α

2

2(β − α)
. (5.36)

Our conjecture is that ifp ↓ 0 the stationary distributions of the processesXp(·)
converge to that same normal distribution.

Results about the autocorrelation functions and first passage times of the
Ornstein–Uhlenbeck process can be used to obtain results for how fast window sizes
adapt when the marking probability changes. Some of this will be done in Section 9.
However, this method may not give the right results if the change in the expected con-
gestion window size is very large compared with the standard deviation as obtained from
(5.38) below. In that case the best way to obtain results for the rate of convergence after
a change in the marking probability is by direct methods, as at the end of Section 2 (for
increasing marking probability), and in Section 9 (for decreasing marking probability).

When one of the mathematical models is used to investigate rates of convergence
(to a new stationary distribution), it must not be forgotten that the models used are based
on “packet time”: the result would be information on the number of packets transmitted
before the new equilibrium is reached.

In order to translate results into clock time (number of RTTs) we have to divide
the number of packets by the congestion windowW.

Strong supporting evidence for the Ornstein–Uhlenbeck conjecture will be given
in Appendix A.

The stationary distribution ofX(·) immediately translates into a stationary distri-
bution forWn: As long as we use the model (5.34), i.e. as long as we disregard the delay
in the feedback, we get: Forp ↓ 0, the stationary distribution ofWn has

E[W] ∼
(
c1(1 − p)

c2p

) 1
β−α

∼
(
c1

c2p

) 1
β−α

, (5.37)

st.dev(W) ∼ c
1+β

2(β−α)

1 c
− 1+α

2(β−α)

2√
2(β − α)

p− 1+β

2(β−α) , (5.38)

coeff.var(W) = st.dev(W)

E[W]
∼ c

− 1−β

2(β−α)

1 c
1−α

2(β−α)

2√
2(β − α)

p
1−β

2(β−α) . (5.39)

(5.27) and (5.39) show that there is a certain charm to choosingβ = 1: with that
choice, and that choice only, the coefficient of variation ofW becomes independent of
p for p ↓ 0 (i.e. when the congestion window is allowed to be very large). In fact, for
that choice the distribution of (pc1

)
1

1−α W becomes independent ofp andc1 for p small.
The non-dependence onpmay seem no big deal, but non-dependence onp implies non
dependence on the average value ofW: scale invariance!

This doubtlessly is one of the reasons “Scalable TCP” choosesβ = 1.
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Any smaller value ofβ makes the (stationary) window size almost deterministic,
equal to the expected value, whenp ↓ 0 (p small, but constant, and the average value of
W becomes large). This is a nice property whenp actually is constant, but is worrisome
whenp varies and we need quick convergence to a new equilibrium. However, we saw
that as long as it is possible to mark multiple packets per RTT it is always possible to
decrease windows geometrically fast. We also know that as long asα = 0 (larger might
be dangerous! see also Section 8) the congestion windows grow exponentially fast ifp
becomes zero or at least decreases by an order of magnitude.

6. The number of marked packets per round trip time

This section, and most further sections, require thatW is expressed in MSSs and that
practically all packets contain practically MSS data bytes, so that every RTT practically
hasW data packets.

This section studies the average number of marked packets per RTT strictly using
the modelsX(t) obtained from (5.13) etc (β = 1) or from (5.30) etc (β < 1).

If a flow has a marking probability ofp per packet and a congestion window of
W packets, it will on average havepW marked packets per Round Trip Time. In the
remainder of this section we will useE[W] or W(p) instead ofW. This number of
marked packets per RTT is important, among other reasons because a large number
of both marked packets and unmarked packets per RTT makes it possible to “gently”
control the flows: It is possible, within one Round Trip Time, to signal a large change
in the marking probabilityp, as well as to signal a fairly subtle change. In the situation
of Section 5, when a flow has been in existence long enough, andp has been constant
long enough to have reached stationarity, we have the following results:

Theorem 2. In the situation of Theorem 1 (β = 1), when a flow is in existence for a
long time and the marking probabilityp is constant and close to zero, if the congestion
window is the only effective limit on the number of outstanding packets, the flow has in
average about

p− α
1−α (c1(1 − α))

1
1−α E

[
Z

1
1−α

]
(6.1)

marked packets per Round Trip Time. The distribution ofZ depends only onc2 and on
α, not onc1 andp.

Using (5.6) instead of (5.26) we would have gotten the approximation of about

p
β−α−1
β−α

(
c1

c2

) 1
β−α

= p− α
1−α

(
c1

c2

) 1
1−α

(6.2)

marked packets per Round Trip Time.

Theorem 3. in the situation of the conjecture (β < 1), when a flow is in existence for a
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long time and the marking probabilityp is constant and close to zero, it has on average
about

p
β−α−1
β−α

(
c1

c2

) 1
β−α

(6.3)

marked packets per Round Trip Time. In this case it makes no difference whether we
use (5.6) or (5.37).

We see that in both cases there is a factorp
β−α−1
β−α . We see that it is highly desirable

that

β − α ≤ 1. (6.4)

Namely, in that case, and that case only, the number of marked packets per Round Trip
Time will not go to zero whenp ↓ 0, at least as long as the flow is allowed very
large windows (as large as the “response surfaces” permit). That way, the router can
signal relatively subtle changes in desired rates. When the number of marked packets
per Round Trip Time falls (significantly) below 1, it becomes hard or impossible for
routers to signal a desired minor change in congestion window. Classical TCP is an
extreme case, with only in the order of

√
p, i.e. much fewer than 1, “marked” packets

per Round Trip Time (if the reader prefers it, we can restate this as about one “marked”
packet perp− 1

2 , i.e. many, RTTs).
(6.3) shows that ifβ − α = 1 it is preferable to choosec1

c2
large.

7. The delay in the feedback

It has been observed before that the model (5.3) used in this paper is not suitable for
investigating the effect of the delay of one Round Trip Time in the feedback. This is
an important weakness, because it is well-known that delay in feedback can lead to
oscillatory behavior and even non-stationarity. An example is given in [49]. The reason
the model used here can not be used to investigate the effect of the delay in the feedback
is that an arriving acknowledgement, whether it acknowledges a marked or unmarked
packet, uses the current window sizeW and not the window size of one RTT ago. Thus,
as long as the window size does not affect the marking probability, if one RTT ago the
window was large we now get a more intense stream of acknowledgements, but with
unaffected marking probabilities: The drift toward equilibrium is stronger (if we think
in clock time), but the equilibrium distribution has not changed.

Similarly, if one RTT ago the window was small, the drift toward equilibrium is
weaker, but the equilibrium distribution has not changed.

This changes of course when the window size affects the marking probability.
In that case, it is natural to assume that higher window size tends to cause higher
marking probability. In that case, a larger window size one RTT ago will tend to cause a
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stronger downward drift, even if the current window already is small (etc.) This situation
obviously can cause oscillatory behavior.

Once the dependence of the marking probabilitypon the window sizeW has been
quantified, it may be possible to use results in [49] to study the deviation from the results
in this paper.

8. Smoothness under stationarity

The conjecture in Section 5 predicts that ifβ < 1 andp is small, once stationarity has
been reached, the congestion window will remain most of the time within in the order of
a few standard deviations (5.38) of the expected value (5.37). We saw that ifp is small
this standard deviation is small compared to the expected value, thus relativelyW is not
expected to vary significantly.

The conjecture also predicts that in the same situation, over an interval that contains
a number of packets that is small compared withp−ν2 = p− 1−α

β−α the variation (largest
minus smallest) will be small compared with the standard deviation, and over an interval
of in the order ofp−ν2 packets the variation will be at most of the order of a standard
deviation. More on this topic can be found in Section 9.

In this section we investigate variability of the congestion window, in the situation
of the conjecture, whenp is small and stationarity has set in, over intervals of in the
order of one RTT. A problem is that the number of packets is not quite known. Thus,
we will investigate variability over an interval that contains in the order of

p− 1
β−α (8.1)

packets. It must be noted that ifα < 0 thenp−ν2 is large compared withp− 1
β−α and

the additional work is not necessary (except may be for readers who do not trust the
conjecture). Ifα = 0 the two entities are of the same order of magnitude.

The results in this section also are of interest in the situationβ = 1.
Loosely, we will call a sample path of the congestion window “very smooth” if

under stationarity the increase of the congestion window over an interval that contains
in the order ofp− 1

β−α packets has a standard deviation that is small compared with the
expected value of the congestion window.

We will do a thought experiment: Suppose the congestion windowW has been
“practically constant” over a period of say 2 RTTs. “Practically constant” means that
the quotient of minimal value over maximal value is close to one. In that “practically
constant” situation we compute the standard deviation of the increase of the window
over the second Round Trip Time. If that standard deviation is small compared with
the congestion window, the original assumption (of an almost constantW) is at least
self-consistent.
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Suppose the congestion window remains close toW. Suppose during the second
RTT exactlyW acknowledgements arrive,N of which are “failures” andW − N of
which are “successes”. N has the Binomial (W, p) distribution, its expected value ispW
and its variance isp(1 − p)W. The total increase Incr over the second RTT thus is

Incr = (W − N)c1W
α − Nc2W

β = c1W
1+α − N(c1W

α + c2W
β). (8.2)

Hence (givenW)

E[Incr] = c1W
1+α − pW(c1W

α + c2W
β), (8.3)

Variance(Incr) = p(1 − p)W
(
c1W

α + c2W
β
)2

, (8.4)

and

Std.Dev(Incr) =
√

(p(1 − p)W)(c1W
α + c2W

β). (8.5)

Thus,

Std.Dev(Incr)

W
= c2

√
(p(1 − p))Wβ− 1

2

(
1 + c1

c2
W−(β−α)

)
. (8.6)

Now we choose forW the predicted value givenp, from (5.5). This gives:

Quotient= p
1
2

1−(α+β)
β−α (1 − p)

1
2

(α+β)−1
β−α c

β−1/2
β−α

1 c
1/2−α

β−α

2 . (8.7)

We see that a condition for sample paths to be “very smooth” ifp is small and stationarity
has been reached is that

α + β < 1. (8.8)

Clearly, with a more reasonable definition, in terms of the sample paths, instead of
in terms of standard deviations, this result is inadequate: In caseβ = 1, α < 0, the
condition (8.8) is satisfied, but clearly in every RTT there is a high probability of an
almost constant window, but also a small probability of a significant (downward) jump.

Of course, it also is likely that as long asβ < 1 then, under stationarity, ifp is
small, even whenα + β > 1 the actual sample paths ofW will vary, during one RTT,
over a range small compared withW: If the deviation from the expected value becomes
large compared with the standard deviation (even though still small compared with the
expected value) the drift toward the expected value becomes quite strong. Hence, the
requirement (8.8) is a “soft” requirement, and in particular is unnecessary ifα < 0 (in
which case it is automatically satisfied anyhow).

It must be noted that ifβ < 1 andα < 0 or evenα = 0 the condition (8.8) is
superfluous: in the first place (as just observed) it is automatically satisfied, in the second
place, in that situation, a RTT contains a number of packets small compared with, or in
the worst case of the order of,p−ν2 packets.
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It is interesting to note that requiring that the expected increase in (8.2) is zero
leads back to (5.5).

It is interesting to not only look at the distribution of the increase ofW overW
packets (or acknowledgements), but also at the expected total variation, i.e. the sum of
the absolute values of the jump sizes.

This expected value is

(1 − p)c1W
α+1 + pc2W

β+1. (8.9)

Dividing (8.9) byW and settingW as in (5.5) gives

2c
β

β−α

1 c
− α

β−α

2 (1 − p)
β

β−α p− α
β−α (8.10)

To make sure that the expected total variation overW packets is small compared
with Wwhenp is small and (5.5) holds we need thatα < 0. If α > 0 the expected total
variation overW packets during stationarity (andW assumed very smooth) becomes of
the order ofW. If α > 0 the expected total variation becomes large compared withW.
While not necessarily bad, that becomes a somewhat worrisome situation.

Thus, this section indicates that the condition

α + β < 1 (8.11)

is somewhat desirable, to keep the standard deviation of the increase ofWoverWpackets
small compared withW, and it indicates that

α ≤ 0 (8.12)

is somewhat desirable, because it keeps the expected total variation ofWoverWpackets
in the order ofW, or smaller.

If α = 0 we see that smaller values ofc1 may be preferred.

9. Transient behavior, and relaxation times

In [48] an in principle complete characterization is given of the transient behavior of the
processZ(t) in (5.17). Some results will be quoted below.

These results can in principle be used to investigate issues like “how fast does the
flow behavior change when the marking probability changes”, or “what must a router
do to quickly achieve a desired change in the behavior of certain flows”.

This section makes a start with such work. An important fringe benefit is that this
section illustrates the difference between “packet time” and “clock time”.

The discussion is in terms of the relaxation times of the processes involved.
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Among the results in [48] is that for any (possibly random, but non-negative) initial
valueZ(0) we have

E[Z(t)] = 1

1 − c
+

(
E[Z(0)] − 1

1 − c

)
e−t(1−c), (9.1)

and

E[(Z(t))2] = 2

(1 − c)(1 − c2)

+
(
E[(Z(0))2] − 2

(1 − c)(1 − c2)

)
e−t(1−c2)

+ 2

(
E[Z(0)] − 1

1 − c

) (
1 − e−ct(1−c)

c(1 − c)

)
e−t(1−c). (9.2)

These specific results are actually easily proven directly and the proof is left to the reader.
The result is that the processZ(t), if it starts out not very far from the new equi-

librium value, “loses its memory” in a small multiple of11−c units of time.
We say that the processZ(·) has “relaxation time”

1

1 − c
. (9.3)

Translating this back into results for the processWn we see that it loses its memory in a
small multiple of 1

p(1−c) packets. In other words, ifβ = 1 the processWn approximately
has relaxation time

1

p(1 − c)
packets. (9.4)

We would like to express this in RTTs. A problem is that the number of packets per RTT
(i.e.W) is random. The best we can do is: Using results from Section 5 we see that if
β = 1, the processWn has approximately

p
α

1−α

(1 − c)(c1(1 − α))
1

1−α E[Z
1

1−α ]
(9.5)

units ofE[W] packets in its relaxation time. If we had used (5.6) instead of (5.26) we
would have gotten that the processWn approximately has

p
α

1−α

1 − c

(
c2

c1

) 1
1−α

(9.6)

units ofW(p) packets in its relaxation time. In the caseβ = 1 the dominating factor for
p small isp

α
1−α and (roughly) the relaxation time is in the order ofp

α
1−α RTTs.
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Next we study the relaxation times in caseβ < 1.
In [23] we see that ifX(t) is the Ornstein–Uhlenbeck process with drift parameter

µ > 0 and local dispersionσ 2 as in (5.34) etc, then (s> 0, t > 0)

E[X(t) | X(0) = xo] = xoe
−µt , (9.7)

Cov(X(s), X(t) | X(0) = xo) = σ 2

2µ

(
e−µ|t−s| − e−µ(t+s)) . (9.8)

Thus, we see that this Ornstein–Uhlenbeck process looses its memory in a small multiple
of 1

µ
units of time: the relaxation time is1

µ
, or

c
1−β

β−α

1 c
− 1−α

β−α

2

β − α
. (9.9)

Thus, ifβ < 1, the processWn approximately has relaxation time

p− 1−α
β−α c

1−β

β−α

1 c
− 1−α

β−α

2

β − α
packets. (9.10)

Just as in the caseβ = 1, we see that ifβ < 1 andp small, the relaxation time of
the processWn contains about

p
α

β−α c
− β

β−α

1 c
α

β−α

2

β − α
. (9.11)

units ofW(p) packets. In this case the number of packets per RTT is “almost constant”
(has very low coefficient of variation), and the derivation is internally consistent.

The analysis above indicates that if we only consider the modelWn without delay
in the control, then forβ = 1 as well asβ < 1 we would need to setα > 0 in order to
get a control scheme that reacts in less than an RTT to small variations in the marking
probabilityp, and we would need to setα = 0 to get a control scheme that reacts in
just a few RTTs to a small change inp. If we setα < 0 it takes many (or very many)
RTTs to react to a small change inp. An example is the slow growth of the congestion
window under TCP with no marked packets.

For changes inp that result in changes inW(p) large compared with the new
standard deviation, the results above probably are not usefull. As long asβ ≥ 0 increasing
p to close to 1 leads to multiplicative (or faster) decrease (per RTT). As long asα ≥ 0
a drastic decrease inp (say to zero) leads to exponential growth inW.

Of course, in the situation with delay of 1 RTT in the feedback, a relaxation time
small compared with RTT can be dangerous and can lead to oscillatory behavior if
routers “unintelligently” adapt the marking probability to perceived congestion.
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10. Achievable window sizes

TCP hasβ − α = 2, thus roughlyw(p) =
√

1
p . This has as effect that it is very hard

indeed to get large congestion windows: to getW = 1000 p must be in the order of
10−6. To make it possible to get large congestion windows, we needβ −α much smaller,
for exampleβ − α ≤ 1.

In addition, choosingα small (−α large) has the consequence that it takes an
enormous number of unmarked acknowledgements before a considerable increase in
the window size is obtained.

Combining this with the results in Section 6 gives us a powerful incentive to choose
β−α ≤ 1, preferablyβ−α < 1, and to chooseα much larger than under TCP: In order to
have sufficiently many marked packets per RTT to enable the router to give fairly subtle
signals, in order to enable the source to achieve large window, and to make it possible
to reach that large window in a reasonable number of unmarked acknowledgements.

11. Desirable values forα andβ

At this point we have sufficient information to discuss choices forα andβ. We saw that
the response function behaves like

w(p) = p− 1
β−α

(
c1

c2

) 1
β−α

, (11.1)

that in equilibrium there are in the order of

pW(p) = p
β−α−1
β−α

(
c1

c2

) 1
β−α

(11.2)

marked packets per RTT, that the “relaxation time” in equilibrium is in the order of

p
α

β−α
c
− β

β−α

1 c
β

β−α

2

β − α
RTTs, (11.3)

and that in order to allow “multiplicative increase” and relaxation times short compared
with a RTT we needα ≥ 0. In addition, Section 8 shows that in order to keep the
expected value of the total variation ofW over a RTT in the order ofW or smaller it is
necessary to have

α ≤ 0, (11.4)
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though it is not clear how important this constraint on the total variation really is. Finally.
Section 8 indicates that if we decide to tryα > 0 then it may be desirable to have

α + β ≤ 1 (11.5)

or at leastα+β not much larger than 1, in order to have some additional confidence that
underp constant and small, under stationarity, the sample paths remain fairly smooth.

Not surprisingly, we have a number of contradictory constraints or desires.
The author of this paper confesses to an intuitive aversion againstα > 0, because

of what may happen due to the delay in the feedback (not investigated in this paper).
Giving in to this aversion, a recommendation is to use either “α = 0” or “α < 0 but
quite close to 0”. and of course in any caseβ − α ≤ 1, preferablyβ − α < 1.

Tom Kelly’s work indicates that the choiceβ = 1, α = 0 has good performance,
probably better thanβ = 1, anyα < 0.

Thus, the most sensible choices are

1. α = 0, β = 1 (Scalable TCP).

2. α < 0 < β < 1 with β − α < 1. In this case we probably must haveα close to zero
to get a “smallish” relaxation time even whenp is small. The constraintβ − α < 1
ensures a large number of marked packets per RTT whenp becomes small.

3. α < 0 < β < 1 with β − α = 1. This is the limiting situation of the case above. In
this case the number of marked packets per RTT remains bounded away from both
zero and infinity whenp ↓ 0 (assuming large congestion windows are possible). In
this case we probably prefer to choosec1

c2
“large”.

4. α = 0 and 0< β < 1 andc1, c2 “suitable”. This combination, if it works, has all
the best characteristics: Large number of marked packets per RTT ifp is small, and
a relaxation time in the order of a few RTTs (independent ofp(!?)).

In addition to the choices above, there is the fascinating but possibly dangerous
choice 0< α < β < 1 with (preferably)α +β < 1. In the objectives used in this paper
it does great: largeW(p) for moderatep, many marked packets per RTT, relaxation time
small compared with the RTT, faster than exponential increase whenp is zero, and a
reasonable guarantee of smooth sample paths ifp is smallish.

It has the disadvantage of large total variation in the congestion window even when
the congestion window is almost constant, and the consequences of delay in the feedback
are thus far unpredictable.

The analyses that led to these conclusions, while sound from a common sense
point of view, clearly have mathematical holes. Thus, the various possibilities must be
investigated by further mathematical analysis, simulation if necessary, and absolutely
by implementation in the laboratory and measurements in the laboratory.

Due to the research funding situation in the USA, the author of this paper has
given up (hopefully temporarily) plans to implement in Linux schemes as above (for
endstations as well as routers).
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12. First estimatingp

With more powerful endstations it is possible to have a more sophisticated algorithm.
The main proposal in this section is to first choose a response functionq(·) and then
explicitly estimatep. The desiredW is computed from the estimatedp using (2.4).p
could be estimated using exponential smoothing, but there may be problems doing this:
Let

Zap(k) =
{

0 if χk = success

1 if χk = failure
(12.1)

(whereχk is as in (5.2)), and let

p̄k = (1 − r ) p̄k−1 + r Zap(k). (12.2)

be the estimate forp. (12.2) has the disadvantage that when the estimatep̄ is small com-
pared with the smoothing parameterr, a single “zapped” (i.e. marked) packet increases
p̄ far too much. It is desirable to letr depend on̄p, for example a well chosen positive
constant times̄p. However, this may lead to problems whenp̄becomes extremely small.
A comprehensive solution seems to be:

Choose a minimal value for̄p. For example, choose a maximal acceptable value
Wmax for the congestion windowW (say the receive window). From the chosen response
surfaceq(·), computep∗ such, thatWmax = W(p∗). Now choosepmin “appropriately
small” (to be defined) compared withp∗. Choose a positive constantc3, 0 < c3 < 1,
for examplec3 = 1

8 or 1
16. Now, instead of (12.2) use

p̄k = max((1 − c3 p̄k−1) p̄k−1 + c3 p̄k−1Zap(k), pmin) . (12.3)

This way, whenp̄ is small, it takes in the order of (log(1+ c3))−1(log base 2) marked
packets in relatively quick succession (much faster than probabilityp̄ per packet) to
double the value of̄p.

Every time p̄ has been recomputed, recomputeW from

W = min(W( p̄),Wmax). (12.4)

Thus, as long aspmin ≤ p̄ ≤ p̄∗,W remains atWmax. When p̄ increases abovep∗,W
decreases belowWmax. As long asp̄ remains belowp∗, randomly marked packets do
not affectW. It seems to make sense to choosepmin = p∗

2 . In that situation about
(log(1+ c3))−1 marked packets in quick succession always start decreasingW.
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13. Estimatingpwith an example response function

In this section we choose, as example, the response function

q(W) = W

c4
, (13.1)

W(p) = c4

p
. (13.2)

based onβ − α = 1, c4 = c1
c2

. α, β, c1 andc2 no longer have meaning by themselves.
Window evolution is done as in Section 12, with parameterc3.

Next we analyze the evolution ofW in the domain whereW < Wmax, p∗ < p̄. In
other words, we always have

Wk = c4

p̄k
. (13.3)

Since we have

p̄k =
{

(1 − c3 p̄k−1) p̄k−1 if Zap(k) = 0,

(1 + c3 − c3 p̄k−1) p̄k−1 if Zap(k) = 1,
(13.4)

we also have

Wk −Wk−1 =




c3c4

1 − c3 p̄k−1
if Zap(k) = 0,

− c3(1 − p̄k−1)

1 + c3(1 − p̄k−1)
Wk−1 if Zap(k) = 1,

(13.5)

Thus, we see that forp∗ < p̄ << 1 the evolution ofW is as in Section 5 with
α = 0, β = 1, c1 = c3c4, andc2 = c3

c3+1.
Sinceβ − α = 1, c1

c2
= c4

c3+1 is the desired number of marked packets per Round
Trip Time (once stationarity has been reached). For every marked packet, the congestion
window is decreased fromW to W

c3+1. If c3 = 1 every marked packet halves the window.

A less draconic choice isc2 = 1
8 or even 1

16. There now are two trains of thought that
can be used to setc2 or c3: the one based on how fast the estimate forp is changing
when there are marked packets, and the one based directly on how fast the congestion
window must change when packets are marked.

A similar analysis can be done with response functions other than (13.1) etc.

14. Router behavior

This note does not study router behavior. It is however possible to make some relevant
observations that may be the start of a later serious study.

A router can estimate, for all its buffers, the number of active flows of classi that
are using that buffer. This can be done, for example, by the methods described in [58].
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Let Ni be the estimated number of active flows of class i. If the router also knows that
all classi flows are ECN–capable, and that all sources of classi flows are using the
“c1, c2, α, β” policy (with c1 etc of course depending oni), it can for example set the
marking probabilityp(i ) for classi packets in that buffer in the order of

p(i ) ∼ c5.N
βi−αi
i . (14.1)

In (14.1) the constantc5 can depend on the buffer occupation etc. We again see
that the caseβi −αi = 1 has a certain charm: the dependence of the probabilitypon the
estimated numberN of flows is smoother than for TCP. A small error in the estimateN
has less serious consequences.βi − αi < 1 might be even better.

The router can always drastically reduce congestion windows by settingp = 1 for
a significant fraction of a Round Trip Time. Since the router is marking, no packet loss
ensues. It is desirable to do this only if the router can predict the effect of markings: If it
does this “until the effect is noticeable”, most congestion windows have been reduced
to one MSS or less. This is one of the places where the delay of 1 RTT in the control is
important and must be included in future work.

15. Conclusions

In this paper we study mechanisms in the Internet where Routers give feedback about
their state of congestion to endstations (say sources) by dropping or marking (ECN,
Explicit Congestion Notification) packets. We argue that Router Behavior (e.g. whether
and when to mark packets) and Source Behavior (e.g. how to modify congestion windows
in reaction to marked and unmarked packets) must be designed together. We argue that
the advent of ECN is an opportunity, quite possibly the last opportunity, to modify the
TCP feedback system (in the short term: give different interpretations to “drop” and
“mark”, and make the interpretation of “mark” dependent on the type of IP packet).

We discuss the general TCP Paradigm, where there are generalincr(·) anddecr(·)
functions. We then restrict our attention to a smaller class of such schemes, where
incr(w) = c1w

α anddecr(w) = c2w
β . For these functions we predict performance, in-

cluding the stationary behavior of congestion window sizes, as function of the marking
probabilityp.

We observe that congestion control schemes in the TCP Paradigm should attain or
approach the following ideals:

• Fast Response: when the marking probabilitypchanges, the congestion window must
quickly converge to the new equilibrium. In other words, we want “small relaxation
times”.

• Smoothness: when the marking probabilityp is constant, congestion windows must
fluctuate in a narrow band around the desired equilibrium value (insofar advertised
windows etc allow). In other words, we want the standard deviation of the window
sizeW to be small ifp is constant.
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• Sensitivity: it must be possible for routers to signal small changes in the marking
probabilityp. This means that as long as the congestion window is not small, neither
the number of marked packets per congestion window nor the number of unmarked
packets per congestion window must be small.

• Non-Oscillatory Behavior: We do not want the delay in the feedback to cause oscilla-
tory behavior whenp is constant. While oscillatory behavior has not been analyzed in
this paper, intuitively it seems that while we like small relaxation times for the reason
above, having relaxation times small compared with the RTT may be dangerous and
needs study.

The analysis results in the following observations:

• Based on the number of marked packets per Round Trip Time we recommendβ −
α ≤ 1, preferablyβ − α < 1.

• Based on the desire to enable exponential growth under low (zero) marking proba-
bility we recommendα ≥ 0. In addition,α = 0 leads to relaxation times roughly
independent ofp, whileα > 0 leads, forp small, to relaxation times short compared
with the RTT.

• Based on the desire to have a strong guarantee that forp small, when stationarity
sets in, the sample paths of the congestion window becomes smooth, we recommend
α ≤ 0. Possiblyα > 0 with α + β < 1 might be manageable.

• Combining the last two items there is a strong incentive to chooseα = 0. Combined
with the first item this means thatβ < 1 becomes very attractive.

As result, “Scalable TCP” withα = 0, β = 1 comes out as a real contender.
However, other combinations withβ − α ≤ 1 andα ≤ 0 < β < 1 (in particularα = 0)
deserve more research and might end up being the preferred choices, see in particular
Section 11.

We give an alternative way of thinking about source behaviors, where sources
estimate marking (or drop) probabilities and react to these estimates, instead of to
individual marked or dropped packets. We show that this alternative way of thinking
can lead to an identical implementation (inside the TCP Paradigm). This may lead to a
more scientific way of choosing source behaviors.

Appendices

A. The Ornstein-Uhlenbeck Approximation

In the situation of the conjecture,

Wn+1 =
{
Wn + c1Wα

n with probabilityp,

Wn + c2W
β
n with probability 1− p,

(A.1)
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with α < β < 1, c1 > 0, c2 > 0. For the process

X(t) = pν1

(
W� t

pν2 � −
(
c1(1 − p)

c2p

) 1
β−α

)
, (A.2)

we therefore have:

1

pν2
E[X(t + pν2) − X(t)|X(t) = x] = pν1−ν2

(
W� t

pν2 +1� −W� t
pν2 �

)

= pν1−ν2

(
(1 − p)c1W

α
� t
pν2

� − pc2W
β

� t
pν2

�

)

= pν1−ν2

(
(1−p)c1

( (
c1(1 − p)

c2p

) 1
β−α

+p−ν1x

)α

−pc2
((
c1(1 − p)

c2p

) 1
β−α

+ p−ν1x

))β

.

We initially guess that as long as|x| is not very large compared with the “guessed”
standard deviation of the processX(t),

|p−ν1x| <<

(
c1(1 − p)

c2p

) 1
β−α

, (A.3)

and do binomial expansions of the inner expressions. Then later, when the standard
deviation is computed or confirmed, we check that guess. (A.3) gives

1

pν2
E[X(t + pν2) − X(t)|X(t) = x]

∼ pν1−ν2

{
(1 − p)c1

(
c1(1 − p)

c2p

) α
β−α

+ (1 − p)c1α

(
c1(1 − p)

c2p

) α−1
β−α

.p−ν1x

− pc2

(
c1(1 − p)

c2p

) β

β−α

− pc2β

(
c1(1 − p)

c2p

) β−1
β−α

.p−ν1x

}

The highest–order terms drop out and we get

1

pν2
E[X(t + pν2) − X(t)|X(t) = x]

∼ −x(β − α)c
− 1−β

β−α

1 c
1−α
β−α

2 (1 − p)−
1−β

β−α p
1−α
β−α

−ν2

We see that to get a “useful” (Ornstein–Uhlenbeck type) result forp ↓ 0 we need

ν2 = 1 − α

β − α
. (A.4)
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Repeating the process for second moments we see that the Ornstein–Uhlenbeck
result holds as long as in additionto (A.4) also

ν1 = 1 + β

2(β − α)
. (A.5)

With (A.4) this yields the condition (5.31).
Sinceα < β, for p small downward jumps in the processX(·) are (much) larger

than upward jumps. By first approximation, the quotient of downward jump sizes and
standard deviation ofX(·) is

(
Jump

St.Dev

)
=

√
2(β − α)c

− 1−β

2(β−α)

1 c
1−α

2(β−α)

2 (1 − p)
β

β−α p
1−β

2(β−α) , (A.6)

which shows that forp ↓ 0 the paths of the processX(·) become continuous. The smaller
the expression in (A.6), the more “almost continuous” the paths of the processX(·).

It must be noted that since in the situation of the conjecture,α < β < 1, and hence

ν2 = 1 − α

β − α
> 1, (A.7)

the speed-up of the processX(t) compared with the processWn is higher in the case
α < β < 1 than in the caseα < β = 1.

The “guess” (A.3) is proven to be correct by the same idea as used in (A.6):

|x| = O(st.dev(X)) = O(1) � pν1

(
c1(1 − p)

c2p

) 1
β−α

=
(
c1(1 − p)

c2

) 1
β−α

p− 1−β

2(β−α) .

B. Reno and NewReno with high drop probability

When the drop probabilityp increases, the performance of “classical” TCP, say Reno or
NewReno, decreases and eventually deteriorates. There is of course no sharp boundary.
The author of this paper uses, somewhat arbitrarily, a value ofp = .1 beyond which he
considers the performance to be unacceptable even for Telnet.

The “square root law” for TCP, used uncritically, predicts that ifp = .1 then
during congestion-avoidance periods the congestion window will fluctuate “around”√

10 ∼ 3.16 MSSs, that is, much of the time is in the range of 1 to 7 MSSs.
If a packet is lost while the congestion window is 1 or 2 or 3 MSSs (and often

when it is 4 MSSs) there will not be a third duplicate acknowledgement, and the flow
goes into time–out. Thus, somewhere aroundp = .1 we will see that half or more of
dropped packets (outside time–out) cause a time—out, and the situation gets worse at
higher drop probabilities.
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Figure 1. Throughputs for TCP Reno and NewReno.

In addition, simple arithmetic shows that by first approximation the average length
of a time-out (assuming drop probability does not change, and there is independence)
is around 1−p

1−2p RTTs (in fact a bit worse than this because it takes more than one RTT
to recognize time–out). Thus, whenp increases beyond .1, the fraction of drops that
causes a time-out increases and at the same time the average duration of time–outs
increases.

When the time–out is over the congestion window quickly returns to roughly half
the value it had before the packet loss that caused the time–out, but then increases slower
once the system is back in congestion avoidance.

Figure 1 shows the result of NS simulations in a network with a “nominal roundtrip
time” (sum of propagation delays) RTT=20 msec, and a negligible “serialization delay”.
The throughput is given for Reno as well as NewReno, as function of the drop probability
p, and is given in MSSs/RTT (MSSs per 20 msec). The simulation is of course not for
Telnet but for the situation of FTPing a large file.

In these simulations, the throughput of Reno dips below 1 MSS per RTT at a drop
probability of about .06, while for NewReno it dips below that rate at a drop probability
of about .08. At a drop probability of .1 both have pathetic performance: Considerably
less than 1 packet per RTT. Thus, the system spends much of its time in time-out, and
in for example Telnet the responsiveness to the human customer is unacceptable.
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