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AbstractIn this paper, we analyze a performance model for theTCP Congestion Avoidance algorithm. The model pre-dicts the bandwidth of a sustained TCP connection sub-jected to light to moderate packet losses, such as losscaused by network congestion. It assumes that TCPavoids retransmission timeouts and always has su�-cient receiver window and sender data. The model pre-dicts the Congestion Avoidance performance of nearlyall TCP implementations under restricted conditionsand of TCP with Selective Acknowledgements over amuch wider range of Internet conditions.We verify the model through both simulation andlive Internet measurements. The simulations test sev-eral TCP implementations under a range of loss con-ditions and in environments with both drop-tail andRED queuing. The model is also compared to live In-ternet measurements using the TReno diagnostic andreal TCP implementations.We also present several applications of the model toproblems of bandwidth allocation in the Internet. Weuse the model to analyze networks with multiple con-gested gateways; this analysis shows strong agreementwith prior work in this area. Finally, we present sev-eral important implications about the behavior of theInternet in the presence of high load from diverse usercommunities.1 IntroductionTra�c dynamics in the Internet are heavily inuencedby the behavior of the TCP Congestion Avoidance al-gorithm [Jac88a, Ste97]. This paper investigates ananalytical performance model for this algorithm. Themodel predicts end-to-end TCP performance fromprop-erties of the underlying IP path. This paper is a �rststep at discovering the relationship between end-to-endapplication performance, as observed by an Internet�This work is supported in part by National Science Founda-tion Grant No. NCR-9415552.

user, and hop-by-hop IP performance, as might be mon-itored and marketed by an Internet Service Provider.Our initial inspiration for this work was the \heuris-tic analysis" by Sally Floyd [Flo91].This paper follows a �rst principles derivation ofthe stationary distribution of the congestion window ofideal TCP Congestion Avoidance subject to indepen-dent congestion signals with constant probability. Thederivation, by Teunis Ott, was presented at DIMACS[OKM96b] and is available on line [OKM96a]. The fullderivation and formal analysis is quite complex and isexpected to appear in a future paper.We present a simple approximate derivation of themodel, under the assumption that the congestion signallosses are periodic. This arrives at the same mathemat-ical form as the full derivation, although the constantof proportionality is slightly di�erent. This paper isfocused on evaluating the model's applicability and im-pact to the Internet.The model applies whenever TCP's performance isdetermined solely by the Congestion Avoidance algo-rithm (described below). We hypothesize that it ap-plies to nearly all implementations of SACK TCP (TCPwith Selective Acknowledgements) [MMFR96] undermost normal Internet conditions and to Reno TCP[Jac90, Ste94, Ste97] under more restrictive conditions.To test our hypothesis we examine the performanceof the TCP Congestion Avoidance algorithm in threeways. First, we look at several TCP implementationsin a simulator, exploring the performance e�ects of ran-dom packet loss, packet loss due to drop-tail queu-ing, phase e�ects [FJ92], and Random Early Detection(RED) queuing [FJ93]. Next, we compare the model toInternet measurements using results from the TReno(\tree-no") [Mat96] user mode performance diagnos-tic. Finally, we compare the model to measurementsof packet traces of real TCP implementations.Many of our experiments are conducted with an up-dated version of the FACK TCP [MM96a], designedfor use with Selective Acknowledgements. We call thisForward Acknowledgments with Rate-Halving (FACK-RH) [MM96b]. Except as noted, the di�erences betweenFACK-RH and other TCP implementations do not havesigni�cant e�ects on the results. See Appendix A for1



congestion window (packets) Time (RTT )0W2W ����0 ����W2 ����W ����3W2 ����2WFigure 1: TCP window evolution under periodic lossEach cycle delivers (W2 )2 + 12 (W2 )2 = 1=p packets and takesW=2 round trip times.more information about FACK-RH.2 The ModelThe TCP Congestion Avoidance algorithm [Jac88a]drives the steady-state behavior of TCP under condi-tions of light to moderate packet losses. It calls for in-creasing the congestion window by a constant amounton each round trip and for decreasing it by a constantmultiplicative factor on each congestion signal.1 Al-though we assume that congestion is signaled by packetloss, we do not assume that every packet loss is a newcongestion signal. For all SACK-based TCPs, multiplelosses within one round trip are treated as a single con-gestion signal. This complicates our measurements ofcongestion signals.We can easily estimate TCP's performance by mak-ing some gross simpli�cations. Assume that TCP isrunning over a lossy path which has a constant roundtrip time (RTT ) because it has su�cient bandwidth andlow enough total load that it never sustains any queues.1 The window is normally opened at the constant rate of onemaximum segment size (MSS) per round trip time (RTT)and halved on each congestion signal. In actual implementations,there are a number of important details to this algorithm.Opening the congestion window at a constant rate is actu-ally implemented by opening the window by small incrementson each acknowledgment, such that if every segment is acknowl-edged, the window is opened by one segment per round trip. LetW be the window size in packets. Each acknowledgment adjuststhe window: W += 1=W , such that W acknowledgments laterW has increased by 1. Since W equals cwnd=MSS, we havecwnd += MSS �MSS=cwnd, which is how the window openingphase of congestion avoidance appears in the code.When the congestionwindow is halved on a congestion signal, itis normally rounded down to an integral number of segments. Inmost implementations the window is never adjusted below someoor, typically 2 segments. Both derivations neglect roundingand this low window limit. [Flo91] considers rounding, resultingin a small correction term.We are also neglecting the details of TCP data recovery andretransmission. Some form of Fast Retransmit and/or Fast Re-covery, with or without SACK, is required. The important detailis that the loss recovery is completed in roughly one round triptime, TCP's Self-clock is preserved, and that the new congestionwindow is half of the old congestion window.

For ease of derivation, we approximate random packetloss at constant probability p by assuming that thelink delivers approximately 1=p consecutive packets, fol-lowed by one drop. Under these assumptions the con-gestion window (cwnd in most implementations) tra-verses a perfectly periodic sawtooth. Let the maximumvalue of the window be W packets. Then by the def-inition of Congestion Avoidance, we know that duringequilibrium, the minimum window must be W=2 pack-ets. If the receiver is acknowledging every segment, thenthe window opens by one segment per round trip, soeach cycle must be W=2 round trips, or RTT � W=2seconds. The total data delivered is the area under thesawtooth, which is (W2 )2 + 12 (W2 )2 = 38W 2 packets percycle. By assumption, each cycle also delivers 1=p pack-ets (neglecting the data transmitted during recovery).Solving for W we get:W =r 83p (1)Substitute W into the bandwidth equation below:BW = data per cycletime per cycle = MSS � 38W 2RTT � W2 = MSS=pRTTq 23p(2)Collect the constants in one term, C =p3=2, then wearrive at: BW = MSSRTT Cpp (3)Other forms of this derivation have been published[Flo91, LM94] and several people have reported unpub-lished, \back-of-the-envelope" versions of this calcula-tion [Mat94a, Cla96].Derivation ACK Strategy CPeriodic Loss Every Packet 1:22 =p3=2(derived above) Delayed 0:87 =p3=4Random Loss Every Packet 1.31follows [OKM96a] Delayed 0.93Table 1: Derived values of C under di�erent assump-tions.The constant of proportionality (C) lumps to-gether several terms that are typically constant for agiven combination of TCP implementation, ACK strat-egy (delayed vs non-delayed)2, and loss mechanism. In-cluded in the TCP implementation's contribution to C2The Delayed Acknowledgment (\DA") algorithm [Ste94] sup-presses half of the TCP acknowledgments to reduce the numberof tiny messages in the Internet. This changes the CongestionAvoidance algorithm because the window increase is driven bythe returning acknowledgments. The net e�ect is that when theTCP receiver sends Delayed Acknowledgments, the sender onlyopens the window by MSS=2 on each round trip. This term canbe carried through any of the derivations and always reduces Cby p2.The receiver always suppresses Delayed Acknowledgementswhen it holds partial data. During recovery the receiver acknowl-edges every incoming segment. The receiver also suppresses De-2



are the constants used in the Congestion Avoidance al-gorithm itself.The model is not expected to apply under a numberof situations where pure Congestion Avoidance does notfully control TCP performance. In general these phe-nomenon reduce the performance relative to that whichis predicted by the model. Some of these situations are:1. If the data receiver is announcing too small a win-dow, then TCP's performance is likely to be fullycontrolled by the receiver's window and not at allby the Congestion Avoidance algorithm.2. Likewise, if the sender does not always have datato send, the model is not likely to apply.3. The elapsed time consumed by TCP timeouts isnot modeled. Many non-SACK TCP implemen-tations su�er from timeouts when they experiencemultiple packet losses within one round trip time[Flo95, MM96a]. These TCP implementations donot �t the model in environments where they ex-perience such losses.4. TCP implementations which exhibit go-back-Nbehaviors do not attain the performance projectedby the model because the model does not accountfor the window consumed by needlessly retrans-mitting data. Although we have not studied thesesituations extensively, we believe that Slow-start,either following a timeout or as part of a normalTahoe recovery, has at least partially go-back-Nbehavior, particularly when the average window issmall.5. TCP implementations which use other windowopening strategies (e.g. TCP Vegas [BOP94,DLY95]) will not �t the model.6. In some situations, TCP may require multiplecycles of the Congestion Avoidance algorithm toreach steady-state3. As a result, short connectionsdo not �t the model.Except for Item 6, all of these situations reduceTCP's average throughput. Under many circumstancesit will be useful to view Equation 3 as a bound on per-formance. Given that Delayed Acknowledgements aremandatory, C is normally less than 1. Thus in manypractical situations, we can use a simpler bound:BW < �MSSRTT � 1pp (4)layed Acknowledgements (or more precisely, transmits acknowl-edgements on a timer) when the data packets arrive more than200 ms apart.There are also a number of TCP implementations which havebugs in their Delayed Acknowledgment algorithms such that theysend acknowledgments less frequently than 1 per 2 data segments.These bugs further reduce C.3This problem is discussed in Appendix B. All of the simula-tions in this paper are su�ciently long such that they unambigu-ously reach equilibrium.

We will show that it is important that appropriatemeasurements be used for p and RTT . For exampleSACK TCP will typically treat multiple packet losses inone RTT as a single congestion signal. For this case, theproper de�nition for p is the number of congestionsignals per acknowledged packet.Although these derivations are for a rather restrictedsetting, our empirical results suggest that the model ismore widely applicable.3 SimulationAll of our simulations use the LBL simulator, \ns ver-sion 1", which can be obtained via FTP [MF95].Most of the simulations in this paper were conductedusing the topology in Figure 2. The simulator associatesqueuing properties (drop mechanism, queue size, etc.)with links. The nodes (represented by circles) imple-ment TCP, and do not themselves model queues. Wewere careful to run the simulations for su�cient time toobtain good measures of TCP's average performance4.This single link is far too simple to model the com-plexity of a real path through the Internet. However,by manipulating the parameters (delay, BW, loss rate)and queuing models (drop-tail, RED) we will explorethe properties of the performance model.
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Link with constant delay,Figure 2: The simulation topologies3.1 Queueless Random Packet LossIn our �rst set of experiments, the single link in Fig-ure 2 was con�gured to model the conditions underwhich Equation 3 was derived in [OKM96a]: constantdelay and �xed random packet loss. These conditionswere represented by a lossy, high bandwidth link5 whichdoes not sustain a queue.The choice of our FACK-RH TCP implementationdoes not a�ect the results in this section, except thatit is able to remain in Congestion Avoidance at higherloss rates than other TCPs. This phenomenon will bediscussed in detail in Section 3.4. The receiver is usingstandard Delayed Acknowledgements.The network was simulated for various combinationsof delay, MSS, and packet loss. The simulation usedthree typical values for MSS: 536, 1460, and 4312bytes. The one-way delay spanned �ve values from 3 ms4This was done by using the bandwidth-delay product to esti-mate an appropriate duration for the simulation, such that Con-gestion Avoidance experienced 50 or more cycles. The durationwas con�rmed from instruments in the simulator.5In order to make sure that the link bandwidth was not alimiting factor, the link bandwidth selected was more than 10times the estimated bandwidth required. We then con�rmed thatthe link did not sustain a queue.3



to 300 ms; and the probability of packet loss was ran-domly selected across four orders of magnitude, span-ning roughly from 0.00003 to 0.3 (uniformly distributedin log(p)). Since each loss was independent (and as-sumed to be relatively widely spaced), each loss wasconsidered to be a congestion signal.In Figure 3 we assume C = 1 and plot the simulationvs. the model. Each point represents one combinationof RTT , MSS, and p in the simulation. The X axisrepresents the bandwidth estimated by the model fromthese measurements, while the Y axis represents thebandwidth as measured by the simulation. Note thatthe bandwidth, spanning nearly �ve orders of magni-tude, has a fairly strong �t along one edge of the data.However, there are many outlying points where the sim-ulation does not attain the predicted bandwidth.In Figure 4 we plot a di�erent view of the same datato better illuminate the underlying behaviors. Simula-tions that experienced timeouts are indicated with openmarkers. For the remainder of the �gures (except wherenoted), we rescale the Y axis by RTT=MSS. The Yaxis is then BW �RTT=MSS which, from classical pro-tocol theory, is a performance-based estimate of the av-erage window size6.We plot p on the X axis, with the loss rate increasingto the right.To provide a common reference for comparing databetween experiments, we plot the line correspondingto the model with C = 1 in Figure 4 and subsequent�gures.When p < 0:01 (the left side of the graph) the �t be-tween the model and the simulation data is quite plau-sible. By looking at the data at p = 0:0001 we estimateC to be 0.9, which agrees with the Delayed ACK en-tries in Table 1. Notice that the simulation and modelhave slightly di�erent slopes, which we will investigatein Section 3.5.When the average loss rate (p) is large (the right sideof the graph), the loss of multiple packets per RTT be-comes likely. If too many packets are lost, TCP will loseits Self-clock and be forced to rely on a retransmissiontimeout, followed by a Slow-start to recover. As men-tioned above, timeouts are known not to �t the model.Note that the open markers indicate if there were anytimeouts in the simulation for a given data point. Manyof the open markers near p = 0:01 experienced only afew timeouts, such that the dominant behavior was stillCongestion Avoidance, and the model more or less �ts.By the time the loss rate gets to p = 0:1 the timeoutbehavior becomes signi�cant. Our choice of FACK-RHTCP alters the transition between these behaviors. Wecompare di�erent TCP implementations in Section 3.4.Note that C=pp can be viewed as the model's esti-mate of window size. This makes sense because packetlosses and acknowledgment arrivals drive window ad-justments. Although time scale and packet size do de-termine the total bandwidth, they only indirectly a�ectthe window through congestion signals.6In this paper, \window" always means \window in packets",and not \window in bytes."
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3.2 Environments with QueuingSince, under the assumptions of Section 2, the Conges-tion Avoidance algorithm is only sensitive to packet lossand Acknowledgement arrivals we expect the model tocontinue to correctly predict the window when queuingdelays are experienced. Thus, with an appropriate de�-nition for RTT , the model should hold for environmentswith queuing.We performed a set of simulations using bottleneckedlinks where queuing could take place. We used a drop-tail link (Figure 2 with drop-tail) with RTT = 60 msandMSS = 1024 bytes. The link bandwidth was variedfrom 10 kb/s to 10 Mb/s, while the queue size was variedfrom 5 to 30 packets. Therefore, the ratio of delay-bandwidth product to queue length spanned from 15:1to 1:400. The simulations in Figures 5 and 6 were allperformed with the stock Reno module in the simulator.In Figure 5 we plot the data using the �xed part ofthe RTT , which includes only propagation delay andcopy time. Clearly the �t is poor.In Figure 6 we re-plot the same data, but use theRTT as measured by a MIB-like instrument in the sim-ulated TCP itself. The instrument uses the round triptime as measured by the RTTM algorithm [JBB92] tocompute the round trip time averaged across the entireconnection. This is the average RTT as sampled by theconnection itself.This transformation has the e�ect of making the Yaxis a measurement-based estimate of the average win-dow. It moves individual points up (relative to the up-per graph) to reect the queuing delay.The slope of the data does not quite agree with themodel, and there are four clusters of outliers. The slope(which we will investigate in Section 3.5) is the same asin Figure 4.The four clusters of outliers are due to the longpacket times at the bottleneck link causing the De-layed ACK timer to expire. This e�ectively inhibits theDelayed ACK algorithm such that every data packetcauses an ACK, raising C by a factor of p2 for the af-fected points, which lie on a line parallel to the rest ofthe data.We conclude that it is necessary to use an RTT mea-surement that is appropriate for the connection. TheRTT as sampled by the connection itself is always ap-propriate. Under some circumstances it may be possibleto use other simpler measures of RTT , such as the timeaverage of the queue at the bottleneck.Reno �ts the model under these conditions becausethe idealized topology in Figure 2 drops exactly onepacket at the onset of congestion 7, and Reno's Fast7It has been observed that Reno TCP's Self-clock is fragile inthe presence of multiple lost packets within one round trip [Hoe95,Flo95, Hoe96, FF96, MM96a, LM94]. In the simulator, a singleTCP connection in ongoing Congestion Avoidance nearly alwayscauses the queue at the bottleneck to drop exactly exactly onepacket when it �lls. This is because the TCP opens the windowvery gradually, and there is no cross tra�c or ACK compressionto introduce jitter. Under these conditions Reno avoids any of itsproblems with closely spaced losses.
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Recovery and Fast Retransmit algorithms are su�cientto preserve the Self-clock. Under these conditions Renoexhibits idealized Congestion Avoidance and �ts themodel. If the simulations are re-run using other TCPimplementations with standard Congestion Avoidancealgorithms 8 the resulting data is nearly identical to Fig-ures 5 and 6. For NewReno, SACK and FACK the datapoints agree within the quantization errors present inthe simulation instruments. This is expected, becauseall are either derived from the original Reno code, orwere expressly designed to have the same overall be-havior as Reno when subjected to isolated losses.3.3 Phase E�ectsPhase e�ects [FJ92] are phenomena in which a smallchange in path delay (on the order of a few packet times)has a profound e�ect on the observed TCP performance.It arises because packets leaving the bottlenecked linkinduce correlation between the packet arrival and thefreeing of queue space at the same bottleneck. In thissection we will show why phase e�ects are consistentwith the model, and what this implies about the futureof Internet performance instrumentation.
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100msFigure 7: Phase E�ects topology.8 The simulator includes models for several di�erent TCP im-plementations. Tahoe [Jac88a] and Reno (describedin [Ste97] and[Jac90]) are well known. The simulator also includes a SACK im-plementation \SACK1" [Flo96], which was based on the original[JB88] SACK, but has been updated to RFC 2018 [MMFR96].This is, by design, a fairly straightforward implementation ofSACK TCP using Reno-style congestion control. NewReno isa version of Reno that has some modi�cations to correct what isessentially a bug that frequently causes needless timeouts in re-sponse to multiple-packet congestion signals. This modi�cationwas �rst suggested by Janie Hoe [Hoe95, CH95] and has beenthoroughly analyzed [Flo95, FF96].Tahoe TCP has signi�cantly di�erent steady-state behaviorthan newer TCP implementations. Whenever a loss is de-tected the congestion window is reduced to 1 (without changingssthresh). This causes a Slow-start, taking roughly log2W roundtrips, and delivering roughly W segments). Tahoe does not �tthe model in a badly underbu�ered network (due to persistentrepeated timeouts). At higher loss rates when a larger fractionof the overall time is spent in Slow-Start, Tahoe has a slightlydi�erent shape, and therefore the model is less accurate.

In Figure 7 we have reconstructed9 one of the sim-ulations from [FJ92], using two SACK TCP connec-tions through a single bottlenecked link with a drop-tailrouter. Rather than reconstructing the complete sim-ulation in which the variable delay is adjusted acrossmany closely spaced values, we present a detailed anal-ysis of one operating point, � = 9:9 ms. In this case,the packets from connection 2 are most likely to arrivejust after queue space has been freed, but just beforepackets from connection 1. Since the packets from con-nection 2 have a signi�cant advantage when competingfor the last packet slot in the queue, connection 1 seesmore packet drops.The packets are 1 kbyte long, so they arrive at thereceiver (node K1) every 10 ms. The 15 packet queueat link L slightly underbu�ers the network. We addedinstrumentation to both the bottlenecked link and theTCP implementations, shown in Table 2. The Linkcolumn presents the link instruments on L, includingtotal link bandwidth and the time average of the queuelength, expressed as the average queuing delay. The twoTCP columns present our MIB-like TCP instrumentsfor the two TCP connections, except for the RTT Es-timate row, which is the average RTT computed byadding the average queue length of the link to the min-imum RTT of the entire path.The loss instruments in the TCP implementationcategorize each loss depending on how it a�ected thecongestion window. Losses that trigger successful(clock-preserving) divide-by-two window adjustmentsare counted as \CA events". All other downward win-dow adjustments (i.e. timeouts) are counted as \non-CA events". Additional losses which are detected whilealready in recovery and do not cause their own win-dow adjustments and are counted as \other losses"10.In the drop-tail case (on the left side of the table), wecan see that TCP1 experienced 103 CA events and 37non-CA events (timeouts). During those same recoveryintervals, there were an additional 76 losses which werenot counted as congestion signals. Note that p is thenumber of CA events per acknowledged segment. Thelink loss instruments, by contrast, do not categorize lostpackets, and cannot distinguish losses triggering conges-tion avoidance.The TCP RTT instrument is the same as in theprevious section (i.e. based on the RTTM algorithm).Note that even though the delay is di�erent by only4.9 ms there is about a factor of 4 di�erence in the per-formance. This is because the loss rate experienced by9Our simulation is identical, except that we raised the re-ceiver's window such that it does not interfere with the Con-gestion Avoidance algorithm. This alters the overall behaviorsomewhat because the dominant connection can potentially cap-ture the full bandwidth of the link.10Every loss episode counts as exactly one CA or non-CA event.Episodes in which there was a Fast Retransmit, but Fast Recoverywas unsuccessful at preserving the Self-clock or additional lossescaused additional window reductions were counted as non-CAevents.All additional retransmissions (occurring in association witheither a timeout or congestion signal) are counted as additionallost packets.6



Table 2: Phase e�ects with queue limit = 15, � = 9:9Drop Tail REDLink TCP1 TCP2 � = 9:9ms Link TCP1 TCP2781 133 648 Bandwidth kb/s 798 430 368259 103+37+76 41+0+2 losses (CA+timo+other) 139 64+0+1 73+0+148795 8287 40508 packets 49853 26851 230020.0053 0.0124 0.0010 p 0.0028 0.0024 0.0032325 315 TCP RTT ms 304 30783.49 Link Delay ms 77.47305 315 RTT Estimate ms 299 309288 (118%) 279 (57%) Link Model kb/s 405 (6%) 393 (7%)177 (34%) 638 (2%) TCP Model kb/s 432 (1%) 370 (1%)Table 3: Phase e�ects with queue limit = 100, � = 9:9Drop Tail REDLink TCP1 TCP2 � = 9:9ms Link TCP1 TCP2800 244 556 Bandwidth kb/s 798 401 39720 12+0+3 5+0+0 losses (CA+timo+other) 137 68+0+0 69+0+050000 15250 34750 packets 49845 25039 248060.0004 0.0008 0.0001 p 0.0027 0.0027 0.00281029 1029 TCP RTT ms 304 307801.03 Link Delay ms 77.251022 1032 RTT Estimate ms 299 308313 (29%) 310 (45%) Link Model kb/s 409 (3%) 396 (1%)222 (10%) 518 (7%) TCP Model kb/s 404 (1%) 395 (1%)each connection is di�erent by an order of magnitude.The model is used to predict performance in twodi�erent ways. The �rst technique, the Link Model,uses only the link instruments, while the second, theTCP Model, uses only the TCP instruments. Clearlyapplying the model to the aggregate link statistics or toTCP1 statistics (with 37 timeouts) in the drop-tail casecan not yield accurate results. The model11 appliedto TCP2's internal instruments correctly predicts thebandwidth.Random Early Detection (RED) [FJ93] is a formof Active Queue Management [B+97], which managesthe queue length in a router by strategically discardingpackets before queues actually �ll. Among many gains,this permits the router to randomize the packet lossesacross all connections, because it can choose to droppackets independent of the instantaneous queue length,and before it is compelled to drop packets by bu�erexhaustion.In the phase e�ects paper [FJ92], it is observed thatif a router uses RED instead of drop-tail queuing, thephase e�ects disappear. In the right side of Table 2 wepresent a simulation which is identical to the left side,but using RED at the bottleneck (link L). With RED,the link instruments are in nearer agreement with theTCP instruments; so the model gives fairly consistentresults when calculated from either link statistics or11Since we are most interested in the drop-tail simulation nearp = 0:01, we estimated a locally-accurate value of C = 0:8 byexamining the data used in Figure 6 in the previous section. Thisvalue of C was used for all the model bandwidths shown in Ta-bles 2 and 3.

TCP instruments12. The residual di�erences betweenthe results predicted by the model are due to p notbeing precisely uniform between the two TCP connec-tions. This may reect some residual bias in RED, andbears further investigation.In Table 3 we repeated the simulations from Table 2,but increased the packet queue limit at link L to 100. Asyou would expect, this only slightly changes the REDcase. However, there are several interesting changes tothe drop tail case.Average RTT has risen to a full second. WithoutRED to regulate the queue length, SACK TCP onlyhalves its window when it �lls the 100 packet queue.TCP's window is being regulated against a full queue,rather than some other operating point closer to theonset of queued data. Even if both connections expe-rience a packet loss in the same RTT , the queue willnot fully drain. We can gauge the queue sizes from theaverage link delay instrument: 800 ms corresponds to80 packets. We know that the peak is 100 packets, sothe minimum queue is likely to be near 60 packets, or600 ms! This is not likely to please interactive users.The tripling of the RTT requires an order of mag-nitude lower loss to sustain (roughly) constant band-width. The model is less accurate, even when appliedto the TCP instruments because the loss sample size istoo small, causing a large uncertainty in p. Excludingthe initial Slow-start, TCP2 only experienced 5 losses12Note that RED also lowered the average link delay, loweredthe total packet losses, raised the aggregate throughput. REDusually signals congestion with isolated losses. Therefore Renomight operate as well as SACK TCP in this environment.7



during the 500 second measurement interval (i.e. eachCongestion Avoidance cycle took 100 seconds!)The symptoms of overbu�ering without RED are:long queuing delays and very long convergence time forthe congestion control algorithm.Also note that our opening problem of projectingend-to-end TCP performance from hop-by-hop pathproperties requires reasonable assurance that the linkstatistics collected at any one hop are indicative ofthat hop's contribution to the end-to-end path statis-tics. This requirement is not met with drop-tail routers,where correlation in the tra�c causes correlation in thedrops.If packet losses are not randomized at each bottle-neck, then hop-by-hop performance metrics may nothave any bearing upon end-to-end performance. RED(or possibly some other form of Active Queue Manage-ment) is required for estimating end-to-end performancefrom link statistics. Conversely, if a provider wishes toassure end-to-end path performance, then all routers(and other potential bottlenecks) must randomize theirlosses across all connections common to a given queueor bottleneck.Also note that if the losses are randomized, C=pp isa bound on the window size for all connections throughany bottleneck or sequence of bottlenecks. Further-more, connections which share the same (randomizedloss) bottleneck tend to equalize their windows [CJ89].We suspect that this is the implicit resource allocationprinciple already in e�ect in the Internet today.133.4 E�ect of TCP Implementation
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We wish to compare how well di�erent TCP implemen-tations �t the model by investigating two aspects oftheir behavior. We �rst investigate the transition fromCongestion Avoidance behavior at moderate p to time-out driven behavior at larger p. In the next section, weinvestigate a least squares �t to the model itself.As mentioned earlier, the model does not predict theperformance when TCP is timeout driven. Although inour simulations timeouts do not cause a serious per-formance penalty, we have not included cross tra�c orother e�ects that might raise the variance of the RTTand thus raise the calculated retransmission timeout.Although Figure 4 might seem to imply that the model�ts timeouts, remember that this was in a queuelessenvironment, where there is zero variance in the RTT .Under more realistic conditions it is likely that timeoutswill signi�cantly reduce the performance relative to themodel's prediction.We simulated all of the TCP implementations sup-ported by the simulator8, with and without DelayedACK receivers, and instrumented the simulator to tab-ulate all downward window adjustments into the sametwo categories as used in the previous section. The �rst,\CA events," includes all successful (clock preserving)divide-by-two window adjustments. The second, \non-CA events", includes all other downward window ad-justments. In Figure 8 we plot the proportion of alldownward adjustments which were successful invoca-tions of the Congestion Avoidance algorithm. (Thisdata is also summarized on the right side of Table 4).FACK-RH TCP avoids timeouts under more se-vere loss than the other TCP implementations becauseit normally sends one segment of new data after the�rst duplicate acknowledgment but before reaching thedupack threshold (triggering the �rst retransmission{see Appendix A). All of the other TCP's are unableto recover from a single loss unless the window is atleast 5 packets14. The horizontal position of the steepdownward transition reects the loss rate at which thevarious TCPs no longer retain su�cient average windowfor Fast Retransmit. Under random loss SACK, Reno,NewReno, and Tahoe all have essentially the same char-acteristics.3.5 Fitting the slopeAs we have observed in the previous sections, the win-dow vs. loss data falls on a fairly straight line on a log-log plot, but the slope is not quite �1=2. This suggeststhat a better model might be in the following form:BW = MSSRTT Cpk (5)Where k is roughly �1=2.We performed a least mean squared �t betweenEquation 5 and the TCP performance as measured inthe simulator. The results are shown in Table 4. All14One packet is lost, the next three cause duplicate acknowl-edgements, which are only counted. The lost packet is not re-transmitted until the �fth packet is acknowledged.8



Least Mean Squares Proportion of successfulAcknowledgement TCP �t W=2 adjustmentsScheme Implement- Equation 3 Equation 5ation N C k C p = :01 p = 0:033 p = 0:1FACK 16 1:352� 0:090 �0:513 1:205� 0:047 0:996 0:985 0:738No SACK 11 1:346� 0:052 �0:508 1:247� 0:033 0:992 0:822 0:497Delayed Reno 12 1:331� 0:054 �0:521 1:096� 0:009 0:935 0:765 0:331ACKs New Reno 12 1:357� 0:055 �0:516 1:167� 0:020 0:983 0:896 0:517Tahoe 11 1:254� 0:079 �0:534 0:920� 0:015 0:974 0:796 0:367FACK DA 15 0:928� 0:086 �0:519 0:783� 0:045 1:000 0:929 0:725Delayed SACK DA 10 0:938� 0:036 �0:518 0:792� 0:012 0:952 0:664 0:112ACKs Reno DA 10 0:939� 0:046 �0:524 0:752� 0:015 0:919 0:595 0:157New Reno DA 11 0:935� 0:045 �0:526 0:738� 0:006 0:942 0:635 0:176Tahoe DA 11 0:883� 0:076 �0:542 0:596� 0:012 0:919 0:590 0:173Table 4: Comparison of various TCP implementations.simulations which experienced timeouts were excluded,so the �t was applied to runs exhibiting only the Con-gestion Avoidance algorithm15. The number of suchruns are shown in column N .For k = �0:5, the values of C are quite close tothe derived values. The quality of the �t is also quitegood. As expected, Delayed Acknowledgements changeC by p2. When k is allowed to vary slightly, the �tbecomes even better still, and the best values for k areonly slightly o� from �0:5. This slight correction tok probably reects some of the simplifying assumptionsused in the derivation of Equation 3. One simpli�cationis that TCP implementations perform rounding downto integral values in several calculations which updatecwnd. The derivation of the model assumes cwnd variessmoothly, which overestimates the total amount of datatransferred in a congestion avoidance cycle. Anothersimpli�cation is that the model expects the window tobegin increasing again immediately after it is cut in half.However, recovery takes a full RTT , during which TCPmay not open the window. We plan to investigate thee�ects of these simpli�cations in the future.4 TReno resultsMuch of our experimentation in TCP congestion dy-namics has been done using the TReno performancediagnostic [Mat96]. It was developed as part ofour research into Internet performance measurementunder the IETF IP Performance Metrics workinggroup [Mat97]. TReno is a natural succession to thewindowed ping diagnostic [Mat94b]. (The FACK-RHalgorithm for TCP is the result of the evolution of thecongestion control implemented in TReno.)TReno is designed to measure the single stream bulktransfer capacity over an Internet path by implement-ing TCP Congestion Avoidance in a user mode diagnos-tic tool. It is an amalgam of two existing algorithms:traceroute [Jac88b] and an idealized version of TCPcongestion control. TReno probes the network with ei-15FACK �ts less well because it avoids timeouts and thus in-cludes data at larger p, where rounding terms become signi�cant.
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ther ICMP ECHO packets (as in the ping program),or low-TTL UDP packets, which solicit ICMP errors(as in the traceroute program). The probe packets aresubject to queuing, delay and congestion-related losscomparable to TCP data and acknowledgment packets.The packets carry sequence numbers which are reectedin the replies, such that TReno can always determinewhich probe packet caused each response, and can usethis information to emulate TCP.This has an advantage over true TCP for exper-imenting with congestion control algorithms becauseTReno only implements those algorithms and does notneed to implement the rest of the TCP protocol, suchas the three-way SYN handshake or reliable data de-livery. Furthermore, TReno is far better instrumentedthan any of today's TCP implementations. Thus it is agood vehicle to test congestion control algorithms overreal Internet paths, which are often not well-representedby the idealized queuing models used in simulations.However, TReno has some intrinsic di�erences fromreal TCP. For one thing, TReno does not keep any state(corresponding to the TCP receiver's state) at the farend of the path. Both the sender's and receiver's be-haviors are emulated at the near end of the path. Thusit has no way to distinguish between properties (suchas losses or delay) of the forward and reverse paths16.For our investigation, TReno was run at randomtimes over the course of a week to two hosts utilizingdi�erent Internet providers. Due to normal uctuationin Internet load we observed nearly two orders of mag-nitude uctuations in loss rates. Each test lasted 60seconds and measured model parameters p and RTTfrom MIB-like instruments.The TReno data17 is very similar to the simulatordata in Figure 4, except that the timeouts have a moreprofound negative impact on performance. If the runscontaining timeouts are neglected, the data is quite sim-ilar.Also note that TReno su�ered far more timeoutsthan FACK-RH in the simulator, even though they havenearly identical internal algorithms. This is discussedin the next section, where we make similar observationsabout the TCP data.5 TCP measurementsIn this section, we measured actual TCP transfers totwo Internet sites in order to test the model. This wasdone by using a slightly modi�ed version of \tcptrace"[Ost96] to post-process packet traces to reconstruct pand RTT from TCP's perspective. These instrumentsare nearly identical to the instruments used in the TCPsimulations.16If the ICMP replies originate from a router, (such as interme-diate traceroute hops) TReno may su�er from a low performanceICMP implementation on the router. This is not an issue in thedata presented here, because the end systems can send ICMPreplies at full rate.17TReno emulates Delayed Acknowledgements.
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This experiment proved to be far more di�cult thanexpected. We encountered a number of di�culties withthe test paths themselves. The Internet is vastly noisierand less uniform than any simulation [Pax97a, Pax97b].Furthermore, several paths exhibited behaviors that arebeyond the scope of the model18.The tests were run at random times over the courseof 10 days, at an average rate of once per hour to eachremote site. The period included a holiday weekend(with unusually low background tra�c), and was notthe same week as the TReno data.During our testing, the connections transferred asmuch data as possible in 100 seconds of elapsed timeto two di�erent Internet sites. Figure 10 shows thatthe model �ts fairly well to data collected to one tar-get. If you compare this to Figure 4 it is in reasonableagreement, considering the di�erence in scale.Figure 11, on the other hand, does not �t as well.It is illustrative to dissect the data to understand whatis happening over this path, and how it relates to themodel's applicability. Our �rst observation is that thereare too many timeouts (indicated by open circles), con-sidering the low overall loss rate.To diagnose this phenomenon, we looked at the rawpacket traces from several of the transfers. Nearly all ofthe timeouts were the result of losing an entire windowof consecutive packets. These short \outages" were notpreceded by any unusual uctuation in delay. Further-more, the following (Tahoe-style) recovery exhibitedno SACK blocks or step advances in the acknowledg-ment number. Therefore an entire window of data hadbeen lost on the forward path. This phenomenon hasbeen observed over many paths in the Internet [Pax97b,p305] and is present in Figures 9 and 10, as well. Lorein the provider community attributes this phenomenonto an interaction between routing cache updates andthe packet forwarding microcode in some commercialrouters19.Our second observation (regarding traces withouttimeouts) is that the number of \CA events" is verysmall, with many traces showing 3 or fewer successfulwindow halving episodes. An investigation of the tracestatistics reveals that the path had a huge maximumround trip time (1800 ms), and that during some of ourtest transfers the average round trip time was as largeas a full second. This suggests that the path is over-bu�ered and there is no active queue management ine�ect to regulate the queue length at the bottleneck.Real TCP over this path exhibits the same symp-toms as the simulation of an overbu�ered link withoutRED in Section 3.3: long queuing delays and very longcycle times for the congestion avoidance algorithm. As aconsequence, our 100 second measurement interval wasnot really long enough and captured only a few conges-18 One discarded path su�ered from packet reordering whichwas severe enough where the majority of the retransmissionswerespurious.19Note that burst losses and massive reordering are not de-tectable using tools with low sampling rates. These sorts of prob-lem can most easily be diagnosed in the production Internet withtools that operate at normal TCP transfer rates.

tion signals, resulting in a large uncertainty in p. Theopen circles on the left side of Figure 11 have observ-able vertical banding in the data corresponding to 1, 2or 3 total congestion avoidance cycles.20. Traces with 4or more congestion avoidance cycles are included in thegood data (solid squares).Our test script also used conventional diagnostictools to measure background path properties bracketingthe TCP tests. Although we measured several param-eters, the RTT statistics were particularly interesting.For \not under test" conditions, the minimumRTT was72.9 ms, and the average RTT was 82 ms21. From thetcptrace statistics, we know that during the test trans-fers the average RTT rose to 461 ms22.Our TCP transfers were su�cient to substantiallyalter the delay statistics of the path. We believe this tobe an intrinsic property of Congestion Avoidance: anylong-running TCP connection which remains in Con-gestion Avoidance raises the link delay and/or loss rateto �nd its share of the bottleneck bandwidth. ThenEquation 3 will agree with the actual bandwidth for theconnection, and if the losses at the bottleneck are su�-ciently randomized, the link statistics (delay and loss)will be common to all tra�c sharing the bottleneck.In general, the current Internet does not seem toexhibit this property. We suspect that this is due to acombination of e�ects, including Reno's inability to sus-tain TCP's Self-clock in the presence of closely-spacedlosses, the prevalence of drop-tail queues and faultyrouter implementations.6 Multiple Congested GatewaysIn this section we apply the model to the problem ofTCP fairness in networks with multiple congested gate-ways. Floyd published a simulation and heuristic anal-ysis of this problem in 1991 [Flo91]. In this paper,she analyzed the following problem: given a networkof 2n gateways, where n are congested by connectionsthat use only one of the congested gateways, what por-tion of the available bandwidth will a connection pass-ing through all n congested gateways receive? Theanalysis of this problem presented by Floyd computesbandwidth by determining the packet loss rate for eachconnection23. Here, we demonstrate that the same re-20The bands are at roughly p = 0:00015;0:00035 and 0:0005.21Each backgroundmeasurement consisted of 200RTT samplestaken either shortly before or shortly after each test TCP transfer.The median of the measurement averages was 80 ms for the \notunder test" case.22The median of the measurement averages was 466 ms for the\under test" cases.Unfortunately, the burst losses obscured our background lossrate measurement, because in the average they causedmuch morepacket loss than the true congestion signals. Since they causedTCP timeouts, they were implicitly excluded from the TCP data,but not from our background measurements.Note that to some extent the burst losses and the RED-lessoverbu�ering are complementary bugs because each at least par-tially mitigates the e�ects of the other.23We should note that Floyd's work was published three yearsprior to Mathis [Mat94a] and �ve years prior to Ott [OKM96a].11
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B0B � 11 +pn(2n� 1) (12)In the case of overbu�ered, drop-tail gateways,where �Q is large and phase e�ects are not an issue,we get a slightly di�erent result:B0B � 11 + n3=2 (13)It is useful to note that C has dropped out of thecalculation. A precise estimate of C was not needed.In this section, we have used Equation 3 to estimateTCP performance and bandwidth allocation in a com-plex network topology. Our calculation agrees with theprior heuristic estimates for this environment.7 Implications for the Internet
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control the elapsed time needed to move scienti�c datasets.First we consider TCP congestion control at themodems, which are the likely bottlenecks for the lowend users. A full-sized packet (1000 bytes) takes about277 ms of modem transmission time. The RTT of theunloaded path is about 400 ms (1000 byte packets ow-ing in one direction, 40 byte acknowledgements owingin the other). Assume 5 packets of queue space at themodem, then the maximum window size is between 6and 7 packets, so the \half window" must be roughly3 packets, yielding an average window of about 5 pack-ets. Since the data packets arrive at the clients withmore than 200 ms headway, acknowledgements will besent for every segment (due to the Delayed Acknowl-edgement timer). Thus we assume that C = 1:2 (thenon-Delayed Acknowledgement periodic case from Ta-ble 1), so the 5 packet average window requires a lossrate of roughly 4% (p = 0:04). This can be observedon the far left edge of Figure 14. (We are assumingFACK-RH TCP).The packet loss at the modem provides feedback tothe TCP sender to regulate the queue at the modem.This queue assures that the modem utilization is high,such that data is delivered to the receiver every 277 ms.These data packets cause the receiver to generate ac-knowledgements every 277 ms, which clock more dataout of the server at a nearly constant average rate.Next we want to consider what happens if link Lloses about 3% of the packets. Since this is not enoughto throttle TCP down to 28.8 kb/s, the modem muststill be introducing some loss, but less than before.Since the modem is still introducing loss, it must stillhave a signi�cant average queue, so the server still sendsdata every 277 ms. With any SACK TCP (includingFACK-RH), only the missing data is retransmitted, sothe average goodput for the modem user continues tobe 28.8 kb/s. Therefore the 3% loss on link L has aninsigni�cant e�ect on the modem user.As the loss rate rises beyond 3%, the queue at themodem becomes shorter, reducing the RTT from about1.2 seconds down toward 400 ms. Note that a 5 packetqueue overbu�ers the path, so the utilization does notstart to fall until the loss rate approaches 10%26.Now consider the plight of an R&E user (See Fig-ure 15). What performance limitations are imposed onthe R&E user by 3% loss? From Equation 3, the aver-age window size must be about 5 packets. If these are536 byte packets (with a 100 ms RTT ), the user can getno more than about 250 kb/s. Timeouts and other dif-�culties could further reduce this performance. At 250kb/s, moving 1 Gigabyte of data27 takes over 8 hours.26Note that this is FACK-RH TCP, which does substantiallybetter than other TCPs in this region.Many recovery episodes exhibit multiple dropped packets (notethat the total link loss rate and CA-Events di�er) so Reno has nohope of preserving its Self-clock. As the peak window size fallsbelow 5 packets, conventional Fast Retransmit will also fail.27Note that at today's prices, with disk space available at be-low $100 per Gigabyte, workstations commonly have several Gi-gabytes of disk space. It is not at all unusual for researchers to13



As a consequence, some researchers have been knownto express mail tapes instead of using the Internet totransfer data sets.Suppose the R&E user needs to move 1 Gigabyte ofdata in 2 hours. This requires a sustained transfer rateof about 1 Mb/s. What loss rate does the user needto meet this requirement? Assume C < 1 (because theR&E receivers will be using Delayed Acknowledgments)and invert Equation 4 to get a bound on p:p < � MSSBWRTT �2 (14)The model predicts that the R&E user needs a lossrate better than 0.18% (p = 0:0018) with 536 byte pack-ets. At 1460 bytes, the maximumloss rate rises to 1.4%.If the R&E user upgrades to FDDI (and uses 4312 bytepackets), Equation 14 suggests that the network onlyneeds to have less than 11% loss.In practice, we need to consider the actual value ofC and potential bottlenecks in all other parts of thesystem, as well as the details of the particular TCP im-plementation. This calculation using the model agreeswith the simulation shown in Figure 15.Note that the speci�c results in this section are verysensitive to many of our assumptions, especially to theuse of FACK-RH TCP and the 5 packet queue at themodem. Di�erent assumptions will change the rela-tive positions of the data in our graphs, but the overalltrends are due to intrinsic properties of TCP congestioncontrol and the Congestion Avoidance algorithm.We can draw some useful rules-of-thumb from ourobservations. First, each factor of 3 in the MSS (4312to 1460, or 1460 to 536) lowers the required end-to-endloss rate by nearly an order of magnitude. Furthermore,a network which is viewed as excellent by modem userscan be totally inadequate for a Research and Educationuser.8 ConclusionWe have shown, through simulation and live observa-tions, that the model in Equation 3 can be used topredict the bandwidth of Congestion Avoidance-basedTCP implementations under many conditions.In the simulator all presented TCPs �t the modelwhen losses are infrequent or isolated. However, sincedi�erent TCPs vary in their susceptibility to timeouts,they diverge from the model at di�erent points.Live Internet tests show rough agreement with themodel in cases where no pathological behaviors arepresent in the path.The model is most accurate when using delay andloss instruments in the TCP itself, or when loss israndomized at the bottleneck. With non-randomizedlosses, such as drop-tail queues, the model may not beable to predict end-to-end performance from aggregatelink statistics.want to transfer a few Gigabytes of data at one time.

FACK-RH, which treats multiple packet losses assingle congestion signals, �ts the model across a verywide range of conditions. Its behavior is very close toideal TCP Congestion Avoidance. Reno, on the otherhand, stumbles very easily and deviates from the modelunder fairly ordinary conditions.To produce a model that applies to all loss rates, weneed to have a model for timeout-driven behavior.Overbu�ering without RED or some other form ofqueue management does not interact well with SACKTCP. A single pair of end-systems running SACK overa long Internet path without RED are likely to sustainpersistent, unpleasantly long queues.The model can be used to predict how TCP sharesInternet bandwidth. It can also be used to predict thee�ects of TCP upon the Internet, and represents anequilibrium process between loss, delay and bandwidth.9 AcknowledgementsWe would like to thank Sally Floyd and Steve McCann(LBL's ns simulator), as well as Shawn Ostermann (tcp-trace) for making their software publicly available, with-out which we would have been unable to complete thiswork. We would also like to thank Dr. Floyd for allow-ing us to use Figure 12 from [Flo91]. We appreciate thewillingness of Mark Allman, Kevin Lahey, and Hari Bal-akrishnan to allow us to use equipment at their sites forour remote testing. We would also like to acknowledgeBruce Loftis, for his assistance in �tting parameters tothe data, and Susan Blackman, for making suggestionsto improve the readability of this paper.A FACK-RH TCPThe FACK-RH TCP used in the simulations and inthe TReno experiment is slightly di�erent than theFACK version presented at Sigcomm96 [MM96a]. Wereplaced \Overdamping" and \Rampdown" by a com-bined \Rate-Halving" algorithm, which preserves thebest properties of each. Rate-Halving quickly �ndsthe correct window size following packet loss, even un-der adverse conditions, while maintaining TCP's Self-clock. In addition, we strengthen the retransmis-sion strategy by decoupling it completely from conges-tion control considerations during recovery. An algo-rithm we call \Thresholded Retransmission" moves thetcprexmtthresh logic to the SACK scoreboard and ap-plies it to every loss, not just the �rst. We also add\Lost Retransmission Detection" to determine when re-transmitted segments have been lost in the network.Rate-Halving congestion control adjusts the windowby sending one segment per two ACKs for exactly oneround trip during recovery. This sets the new windowto exactly one-half of the data which was actually heldin the network during the lossy round trip. At the be-ginning of the lossy round trip snd:cwnd segments havebeen injected into the network. Given that there havebeen some losses, we expect to receive (snd:cwnd�loss)acknowledgments. Under Rate-Halving we send half as14



many segments, so the net e�ect on the congestion win-dow is: snd:cwnd = �snd:cwnd� loss2 � (15)This algorithm can remain in Congestion Avoidance,without timing out, at higher loss rates than algorithmsthat wait for half of the packets to drain from the net-work when the window is halved.We detect when exactly one round trip has elapsedby comparing the value of the forward-most SACKblock in each ACK to the value of snd:nxt saved atthe time the �rst SACK block arrived.Bounding-Parameters add additional controls toguarantee that the �nal window is appropriate, in spiteof potential pathological network or receiver behaviors.For example, a TCP receiver which sends superuousACKs could cause Rate-Halving to settle upon an inap-propriately large window. Bounding-Parameters assurethat this and other pathologies still result in reasonablewindows. Since the Bounding-Parameters have no ef-fect under normal operation, they have no e�ect on theresults in this paper.We are continuing to tinker with some of the de-tails of these algorithms, but mostly in areas that haveonly minute e�ects on normal bulk TCP operations.The current state of our TCP work is documented athttp://www.psc.edu/networking/tcp.html.B Reaching EquilibriumIn several of our simulations and measurements wenoted that an excessive amount of time was sometimesrequired for TCP to reach equilibrium (steady-state).One interpretation of Equation 3 is that the averagewindow size in packets will tend to C=pp. However,during a Slow-start (without Delayed ACKs), the ex-pected window size is on the order of 1=p when the�rst packet is dropped, 2=p when the loss is detected,and back down to 1=p by the end of recovery (assum-ing SACK TCP). This window is much too large if pis small. It then takes roughly log2 � 1=pC=pp� congestionsignals to bring the window down to the proper size.This requires the delivery of 1p log2 1Cpp packets, whichis large if p is small.The e�ect of this overshoot can be signi�cant. Sup-pose p = 1=256 (approximately 0:004) then we have1=pp = 16 and log2 1=pp = 4. So it takes roughly 1000packets to come into equilibrium. At 1500 bytes/packet,this is more than 1.5 Mbytes of data.The average window in steady state will be 16 pack-ets (24 kbytes). If the path has a 100 ms RTT , thesteady state average bandwidth will be close to 2 Mb/s.However the peak window and bandwidth might belarger by a factor 16: 256 packet (6 Mbytes) and30 Mb/s. (This is a factor of 1=p1=pp ). The overshootwill be this pronounced only if it consumes a negligiblefraction of the bottleneck link. Clearly this will not be

the case over most Internet paths so the Slow-start willdrive up the loss rate (or run out of receiver window)causing TCP to converge more quickly. It is unclearhow signi�cant this overshoot is in the operational In-ternet.In all of our simulations we estimate the time re-quired for the connection to reach steady-state, and ex-clude the initial overshoot when measuring loss, delayand bandwidth.References[B+97] Robert Braden et al. Recommendations onQueue Management and Congestion Avoid-ance in the Internet, March 1997. Internetdraft draft-irtf-e2e-queue-mgt-00.txt (Workin progress).[BOP94] Lawrence S. Brakmo, Sean W. O'Malley,and Larry L. Peterson. TCP Vegas: NewTechniques for Congestion Detection andAvoidance. Proceedings of ACM SIG-COMM '94, August 1994.[CH95] David D. Clark and Janey C. Hoe. Start-up Dynamics of TCP's Congestion Con-trol and Avoidance Schemes. Technical re-port, Internet End-to-End Research Group,1995. Presentation. Cited for acknowledge-ment purposes only.[CJ89] D. Chiu and R. Jain. Analysis of the In-crease/Decrease Algorithms for CongestionAvoidance in Computer Networks. Journalof Computer Networks and ISDN, 17(1):1{14, June 1989.[Cla96] Dave Clark. Private communication, De-cember 1996. Derivation of Bandwidth vs.Loss.[DLY95] Peter B. Danzig, Zhen Liu, and LimimYan.An Evaluation of TCP Vegas by Live Em-ulation. ACM SIGMetrics '95, 1995.[FF96] Kevin Fall and Sally Floyd. Simulations-Based Comparisons of Tahoe, Reno andSACK TCP. Computer CommunicationsReview, 26(3), July 1996.[FJ92] Sally Floyd and Van Jacobson. On Traf-�c Phase E�ects in Packet-Switched Gate-ways. Internetworking: Research and Expe-rience, 3(3):115{156, September 1992.[FJ93] Sally Floyd and Van Jacobson. RandomEarly Detection Gateways for CongestionAvoidance. IEEE/ACM Transactions onNetworking, August 1993.[Flo91] Sally Floyd. Connections with MultipleCongested Gateways in Packet-Switched15



Networks, Part 1: One-way Tra�c. Com-puter Communications Review, 21(5), Oc-tober 1991.[Flo95] Sally Floyd. TCP and Successive FastRetransmits, February 1995. Obtain viaftp://ftp.ee.lbl.gov/papers/fastretrans.ps.[Flo96] Sally Floyd. SACK TCP: The sender'scongestion control algorithms for the im-plementation sack1 in LBNL's ns sim-ulator (viewgraphs). Technical report,TCP Large Windows Working Group ofthe IETF, March 1996. Obtain viaftp://ftp.ee.lbl.gov/talks/sacks.ps.[Hoe95] Janey C. Hoe. Startup Dynamics ofTCP's Congestion Control and AvoidanceSchemes. Master's thesis, MassachusettsInstitute of Technology, June 1995.[Hoe96] Janey C. Hoe. Improving the Start-up Be-havior of a Congestion Control Scheme forTCP. Proceedings of ACM SIGCOMM '96,August 1996.[Jac88a] Van Jacobson. Congestion Avoidance andControl. Proceedings of ACM SIGCOMM'88, August 1988.[Jac88b] Van Jacobson. Traceroute Source Code,1988. Obtain via ftp from ftp.ee.lbl.gov.[Jac90] Van Jacobson. Modi�ed TCP CongestionAvoidance Algorithm. Email to end2end-interest Mailing List, April 1990. Obtainvia ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.[JB88] Van Jacobson and Robert Braden. TCPExtensions for Long-Delay Paths, October1988. Request for Comments 1072.[JBB92] Van Jacobson, Robert Braden, and DaveBorman. TCP Extensions for High Perfor-mance, May 1992. Request for Comments1323.[LM94] T.V. Lakshman and U. Madhow. The Per-formance of TCP/IP for Networks withHigh Bandwidth-Delay Products and Ran-dom Loss. IFIP Transactions C-26, HighPerformance Networking, pages 135{150,1994.[Mat94a] Matthew Mathis. Private communication,November 1994. Derivation of Bandwidthvs. Loss.[Mat94b] Matthew B. Mathis. Windowed Ping: AnIP Layer Performance Diagnostic. Proceed-ings of INET'94/JENC5, 2, June 1994.

[Mat96] Matthew Mathis. Diagnosing Internet Con-gestion with a Transport Layer Perfor-mance Tool. Proceedings of INET'96, June1996.[Mat97] Matthew Mathis. Internet Performanceand IP Provider Metrics information page.Obtain via http://www.psc.edu/~mathis/ippm/, 1997.[MF95] Steven McCanne and Sally Floyd. ns{LBL Network Simulator. Obtain via:http://www{nrg.ee.lbl.gov/ns/, 1995.[MM96a] Matthew Mathis and Jamshid Mahdavi.Forward Acknowledgment: Re�ning TCPCongestion Control. Proceedings of ACMSIGCOMM '96, August 1996.[MM96b] Matthew Mathisand Jamshid Mahdavi. TCP Rate-Halvingwith Bounding Parameters, October 1996.Obtain via: http://www.psc.edu/network-ing/papers/FACKnotes/current/.[MMFR96] Matthew Mathis, Jamshid Mahdavi, SallyFloyd, and Allyn Romanow. TCP SelectiveAcknowledgement Options, October 1996.Request for Comments 2018.[OKM96a] Teunis Ott, J.H.B. Kemperman, andMatt Mathis. The Stationary Behav-ior of Ideal TCP Congestion Avoidance.In progress, August 1996. Obtain viapub/tjo/TCPwindow.ps using anonymousftp to ftp.bellcore.com, See also [OKM96b].,August 1996.[OKM96b] Teunis J. Ott, J.H.B. Kemperman, andMatt Mathis. Window Size Behavior inTCP/IP with Constant Loss Probability,November 1996.[Ost96] Shawn Ostermann. tcptrace TCP dump-�le analysis tool.Obtain via http://jarok.cs.ohiou.edu/soft-ware/tcptrace/tcptrace.html, 1996.[Pax97a] Vern Paxson. Automated Packet TraceAnalysis of TCP Implementations. Proceed-ings of ACM SIGCOMM '97, August 1997.[Pax97b] Vern Paxson. Measurements and Analy-sis of End-to-End Internet Dynamics. PhDthesis, University of California, Berkeley,April 1997.[Ste94] W. Richard Stevens. TCP/IP Illustrated,volume 1. Addison-Wesley, Reading MA,1994.[Ste97] W. Richard Stevens. TCP Slow Start, Con-gestion Avoidance, Fast Retransmit, andFast Recovery Algorithms, January 1997.Request for Comments 2001.16


