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Abstract

This paper contains results on stability of Ornstein-Uhlenbeck like Processes

with delayed feedback which prove that for sufficiently long delay in the feedback

the process becomes unstable. The point where instability starts is given explicitly.

One of the results is that exponential smoothing can never save such a process from

instability, and in many cases can instead push it into instability.

The motivation for this study is research on when delay in the feedback in the

internet (e.g. due to Round Trip Times) can cause instability in the Internet.
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1 Introduction and Main Results

In this paper we study two forms of the “Ornstein-Uhlenbeck process with Delayed Feed-

back”. The first process is the process Y (·) defined by

dY (t) = −cY (t− T )dt+ b dX(t), (1.1)

where c > 0, T ≥ 0 and b 6= 0 all are constants and X(·) is Standard Brownian Motion.

Obviously, T is the delay in the feedback. The Ornstein-Uhlenbeck process without delay

in the control is discussed in, among other places, [1]. A model more general than (1.1),

namely one with an extra term adY (t) is studied in [6].

The second process studied in this paper is a different generalization of (1.1), namely

Yλ(·) is defined by

dYλ(t) = −c
(
∫ ∞

0
λe−λτYλ(t− T − τ)dτ

)

dt+ b dX(t), (1.2)

where c > 0, T ≥ 0, λ > 0 and b 6= 0 are constants and X(·) is Standard Brownian Motion.

The average delay in the feedback for this process is T + 1/λ.

For this paper the addition of the extra exponential smoothing term in (1.2) is the

main contribution, but both models are studied from “first principles”.

The study of “exponential smoothing” is of interest, for example, in studying the stabil-

ity of the Internet, for example in studying the question whether “exponential smoothing”

increases or decreases the potential for oscillatory behavior.

We note that as long as T > 0 we do not need Ito integration to define the integrals

above: If t1 < t2 (1.1) stands for

Y (t2) − Y (t1) = −c
∫ t2−T

t1−T
Y (τ)dτ + b(X(t2) −X(t1), (1.3)
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and if 0 ≤ t2 − t2 ≤ T the two terms in the RHS of (1.3) are independent: for every

t1 ((X(t2) − X(t1)t2≥t1 is independent of (Y (t))t≤t1 . See also the discussion of response

functions after (1.12). Thus, if (Y (t))t<t1 and (X(t)−X(t1)t>t1) are given, we can further

knit the samplepath of (Y (t))t>t1 together.

Similarly, (1.2) stands for (same t1, t2):

Yλ(t2) − Yλ(t1) = −c
∫ t2−T

t1−T

∫ ∞

0
λe−λτYλ(t− τ)dτdt+ b(X(t2) −X(t1)) =

−c(1 − e−λ(t2−t1))
∫ t1−T

−∞
Yλ(u)eλ(t1−T−u)du− c

∫ t2−T

t1−T
Yλ(u)(1 − e−λ(t2−T−u))du

+b(X(t2) −X(t1)). (1.4)

Clearly, for λ→ ∞ the process Yλ(·) converges to the process Y (·). The main results

are the theorems 1 and 2 below:

Theorem 1. The process Y (·) in (1.1) is ergodic if and only if c > 0 and

0 ≤ cT <
π

2
. (1.5)

Before stating theorem 2 we need to introduce some notation:

For x > 0, q(x) is defined as the smallest positive solution to

q(x) tan(q(x)) = x, (1.6)

see figure 1.

Clearly, q(x) is continuous and strictly increasing in x, and

q(0) = lim
x↓0

q(x) = 0, q(∞) = lim
x↑∞

q(x) =
π

2
. (1.7)
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Figure 1: tan(x), x. tan(x), and q(z)

For x > 0, θ(x) is defined as

θ(x) =
q(x)

sin(q(x))
. (1.8)

Clearly, θ(x) is continuous and strictly increasing in x, and

θ(0) = lim
x↓0

θ(x) = 1, θ(∞) = lim
x↑∞

θ(x) =
π

2
, (1.9)

see figure 2.

Theorem 2. The process Yλ(·) is ergodic if and only if c > 0 and

0 ≤ Tc < θ(λT ). (1.10)

Because of what we learned about the function θ(·) we now know that if Tc ≤ 1

the process Yλ is stationary for all values of λ > 0, while if Tc ≥ π
2

the process Yλ is
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stationary for no value of λ. If 1 < Tc < π
2

the process Yλ is stationary as long as

λ is sufficiently large. Thus, if the process Y (·) in (1.1) is non-stationary, it can never

be made stationary by introducing exponential smoothing, while if it is stationary and

1 < cT < π
2

adding exponential smoothing can (and with λ small enough will) make the

process non-stationary.

The proofs of the two theorems depend on proving that the dominating singularities of

the Laplace Transforms of the Impulse Response Functions of the linear systems described

by (1.1) and (1.2) have real parts that are strictly negative and bounded away from zero.

(see below). This is of course related to the “Nyquist Criteria for Stability in Linear

ceontrol feedback systems”, see e.g. [3].

There still is more research to be done: preliminary numerical work seems to indicate

that when cT is close to one and λT such that system (1.2) is stable, the dominating

4



singularities often are extremely close to the imaginary axis. If (1.1) or (1.2) is used

as (imperfect) model for a real system, stability of the model (or lack thereoff) might

not necessarily imply stability of the real system (or lack thereoff) when the dominating

singularities are close to the imaginary axis.

More specifically, the proofs of the theorems 1 and 2 proceed by checking whether the

functions

φT,c(z) = z + ce−Tz (1.11)

respectively

φT,c,λ(z) = z +
λce−Tz

λ+ z
(1.12)

have zeros with non-negative real part:

Let fT,c(·) be the Impulse Response Function of the system (1.1), i.e. for t > 0, fT,c(t)

is the value of Y (t) in the hypothetical situation that X(t) = Y (t) = 0 for t < 0 and

bX(t) = 1 for t ≥ 0 (so that also Y (t) = 1 for 0 ≤ t ≤ T ). By taking Laplace Transforms

in (1.1) we see that the Laplace Transform of fT,c(·) is

(φT,c(z))
−1 = (z + ce−Tz)−1 =

∞
∑

k=0

(−c)k e
−kTz

zk+1
, (1.13)

so that

fT,c(x) =
∞
∑

k=0

(−c)k ((x− kT )+)k

k!
=

b x
T
c

∑

k=0

(−c)k (x− kT )k

k!
(1.14)

The process has a stationary distribution if and only if

∫ ∞

0
|fT,c(t)|2dt <∞, (1.15)

and in that case the stationary distribution satisfies

Y (t) = b
∫ t

−∞
fT,c(t− τ)dX(τ), (1.16)

V ar(Y (t)) = b2
∫ ∞

0
|fT,c(t)|2dt. (1.17)
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and of course

E[Y (t)] = 0. (1.18)

By Parseval’s relation for Fourier Transforms, see e.g. [4], we have that as long the

function φT,c has no zeros on or to the right of the imaginary axis and (1.5) holds

∫ ∞

0
|fT,c(x)|2dx =

1

2π

∫ +∞

−∞
| 1

φT,c(iz)
|2dz =

1

2π

∫ +∞

−∞
|z2 + c2 − 2zc sin(Tz)|−1dz <∞. (1.19)

Later we will see that in fact when (1.5) holds the function φT,c has no zeros on or to the

right of the imaginary axis.

Similar results hold for the process Yλ(.).

At this point it is interesting to observe that if

cT > 1 (1.20)

then 1/φT,c(z) can not be a completely monotone function (see [2] for results on completely

monotone functions), therefore the function fT,c(x) can not be strictly non-negative on

x > 0. We wonder whether cT ≤ 1 might imply that the function fT,c(.) is strictly

non-negative. Investigating this question might lead to additional insight in the special

situation of cT ≤ 1. The function fT,c(x) being strictly non-negative implies complete

absence of oscillatory behavior.

In any case, deciding whether the process Y (·) is stationary is reduced to finding

whether there are zeros of φT,c(·) with non-negative real part. There are (at least) two

ways of doing this:

The easier way is to use the Argument Principle in complex analysis, see e.g. [5]:

Let z run through the contour obtained by first following the imaginary axis from −iR
to +iR and then going back following the halfcircle with radius R through the positive
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halfplane. Let C be the contour thus traversed by (e.g.) φT,c(z). Since the functions

φT,c(·) and φT,c,λ(·) have no singularities in the positive halfplane, the number of times

C winds around zero (in positive direction) is the number of zeros of φT,c(·) (respectively

φT,c,λ(·)) inside the original halfcircle contour (multiplicities counted). By letting R → ∞
we find the number of zeros in the right halfplane, and if this number is zero the system

is stable. This is the method usually used in control theory.

A second, more complicated method is to identify all zeros of (e.g.) φT,c(·). The second

method is more work but also gives more information. The first method will be used in

section 2 and the second method will be used in the sections 3 - 6. Use of the Argument

Principle explains why in theorem 2 the value of λ matters only when 1 < cT < π
2

It is useful to note that as long as T > 0

fT,c(x) = fTc,1(cx). (1.21)

Thus, we can always make c=1.

Let fT,c,λ(·) be the impulse response function of system (1.2). The Laplace Transform

of fT,c,λ(·) is

(φT,c,λ(z))
−1 =

(

z +
λce−Tz

λ+ z

)−1

=
∞
∑

k=0

(−c)k

(

λ

λ+ z

)k
e−kTz

zk+1
, (1.22)

so that

fT,c,λ(x) = 1 +

b x
T
c

∑

k=1

(−c)k

(k − 1)!(k!)

∫ x

kT
(y − kT )kλk(x− y)k−1e−λ(x−y)dy. (1.23)

(1.23) can be re-written as

fT,c,λ(x) = fT,c(x) +

b x
T
c

∑

j=1

λ−j×







b x
T
c

∑

k=j

(−1)k−jck







k + j − 1

k − 1







(x− kT )k−j

(k − j)!
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−(−1)j

b x
T
c

∑

k=j

cke−λ(x−kT )







k + j − 1

k







(x− kT )k−j

(k − j)!





 ,

see appendix A. This last expression describes how fT,c,λ(·) converges to fT,c(·) when

λ→ ∞.

Investigating whether the process YT,c,λ(·) is stationary is again reduced to finding out

whether φT,c,λ(·) has zeros with non-negative real part.

Similar to (1.20) we prove that if

c(T +
1

λ
) > 1 (1.24)

then the function fT,c,λ(x) can not be strictly non-negative on x > 0. We wonder whether

c(T + 1
λ
) ≤ 1 might imply that fT,c,λ(x) is strictly non-negative. Investigation of this

question might (again) lead to insight into the special situation of cT ≤ 1.

For the process Y (·) we will not only find out when the function φT,c(·) has zeros in

the right halfplane but also produce information about the actual position of all zeros.

The results are given next. In these results we rescale to achieve that c = 1.

Theorem 3. Consider the function

φ(z) = z + e−Tz, as in (1.11), but c = 1. (1.25)

There are four situations:

I. If

0 < T <
1

e
, (1.26)

φ(·) has two distinct negative real zeros −R and −NR, and further pairs of complex

conjugate zeros (−uk ± ivk)
∞
k=1, with

0 < R < e <
1

T
< NR < u1 < u2 < · · · , (1.27)
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2kπ

T
< vk <

(2k + 1
2
)π

T
for all k ≥ 1, (1.28)

uk >
1

T
log

(

2kπ

T

)

for all k ≥ 1, (1.29)

(2k + 1
2
)π

T
− vk ∼ 1

(2k + 1
2
)πT

log

(

(2k + 1
2
)π

T

)

(for k → ∞), (1.30)

uk −
1

T
log

(

(2k + 1
2
)π

T

)

∼ 1

2T









log
(

(2k+ 1
2
)π

T

)

(2k + 1
2
)π









2

(for k → ∞). (1.31)

Among the differences between (1.29) and (1.31) is that (1.29) holds for all k ≥ 1 while

the LHS in (1.31) might be negative for small values of k.

II. If

T =
1

e
, (1.32)

φ(·) has two coinciding real zeros in − 1
T

= −e and further complex conjugate pairs of

zeros (−uk ± ivk)
∞
k=1 as in (1.28)-(1.31).

III. If
1

e
< T <

π

2
, (1.33)

φ(·) had complex conjugate pairs of zeros (−uk ± ivk)
∞
k=0 with

0 < u0 <
1

T
< u1 < u2 < · · · , (1.34)

0 < v0 < v1 < · · · , (1.35)

for which (1.28)-(1.31) hold ((1.28)-(1.29) now hold for all k ≥ 0).

IV. If T ≥ π
2
, more precisely if

(2n+
1

2
)π ≤ T < (2n+

5

2
)π (1.36)

for some integer n ≥ 0, then φ(·) has complex conjugate pairs of zeros (−uk ± ivk)
∞
k=0

with

u0 < u1 < · · · < un ≤ 0 < un+1 < un+2 < · · · , (1.37)
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(2k +
1

2
)
π

T
< vk < (2k + 1)

π

T
for 0 ≤ k ≤ n− 1, (1.38)

(2n+
1

2
)
π

T
≤ vn <

(2n+ 1)π

T
“for k = n′′, (1.39)

and (1.28)-(1.31) hold for k > n.

Moreover, (φ(z))−1 = (z + e−Tz)−1 is the Laplace Transform of

fT (x) =

b x
T
c

∑

k=0

(−1)k (x− kT )k

k!
, (1.40)

and for T > e−1, x > 0,

fT (x) =
∞
∑

k=0

2e−ukx

√

(Tuk − 1)2 + (Tvk)2
sin(vkx− ψk), (1.41)

where

sinψk =
Tuk − 1

√

(Tuk − 1)2 + (Tvk)2
, cosψk =

Tvk
√

(Tuk − 1)2 + (Tvk)2
. (1.42)

Proof: See sections 3 and 4.

Similar expressions can be derived for fT (·) if 0 < T < e−1 and for T = e−1, and also

for the function fT,c,λ(·).
Remark 1. For x > 0 the sum (1.41) converges absolutely (because of (1.28)-(1.31),

which hold for k > T
2π

− 1
4
). For −T < x ≤ 0 the sum (1.41) still converges but does not

converge absolutely. For x = 0 the value of the sum is 1
2
, for −T < x < 0 the value is zero.

Theorem 4. There exists a stationary version of the process Y (·) if and only if

0 ≤ cT <
π

2
, (1.43)

and if (1.43) holds the stationary version is given by

Y (t) = b
∫ t

−∞
fcT (c(t− τ))dX(τ). (1.44)
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Because of (1.40)-(1.42), there is no issue with convergence of the integral (1.44). In the

situation of (1.44), the Gaussian process Y (·) has autocorrelation function

C(t) = Cov(Y (τ), Y (τ + t)) (1.45)

which satisfies

C(t) =
b2

2c
· cos(

π
4
− cT

2
+ c|t|)

cos(π
4

+ cT
2

)
for |t| ≤ T, (1.46)

and
d

dt
C(t) = −cC(t− T ) for t > 0. (1.47)

Proof: See Section 6.

Corollary. From (1.46), (1.47) it is easy to obtain the Laplace Transform of the

function C(·):

γ(s) =
∫ ∞

0
e−stC(t)dt =

b2

2c

(

1 +
ce−sT

s

)−1 (
e−sT

s
+
∫ T

0
e−st cos(π

4
− cT

2
+ ct)

cos(π
4

+ cT
2

)
dt

)

.

(1.48)

If T = 0 this leads to an alternative proof of the well–known results

γ(s) =
b2

2c
.

1

c+ s
, C(t) =

b2

2c
e−ct, (1.49)

and

φ0,c(z) = z + c, f0,c(x) = e−cx, (1.50)

see e.g. example 6.8 in chapter 5 of [1]

2 Relaxation Times, Stability, and Transport Proto-

cols

In addition to (1.49) and (1.50) we have for the process Y (.) with T = 0 in (1.1) (see e.g.

[7]) that for (s ≥ 0, t ≥ 0)
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E[Y (t)|Y (0) = y0] = y0e
−ct, Cov(Y (s), Y (t)|Y (0) = y0) =

b2

2c

(

e−c|t−s| − e−c(t+s)
)

.

(2.1)

Hence, if T = 0, i.e. there is no delay in the feedback, this process Y (.) “looses its

memory” in an amount of time of a few times 1
c
. We call R = 1

c
the relaxation time of

the process Y (.).

This leads to the following intuitive insight (or conjecture): In order to tell whether

a process with delay T in the feedback is stationary, we first find the relaxation time

R of the corresponding process without delay in the feedback (assuming that process is

reasonably well–defined and stationary).

If now T << R we can use as a working hypothesis that the process with delayed

feedback is stationary. If T >> R we can use as working hypothesis that the process

with delayed feedback is non–stationary. If T and R are of the same order of magnitude

further analysis is required.

This intuitive insight was used in [8] to suggest some promising parameter values

for the class of Internet Transport Protocols discussed in that paper. The Transport

Protocols discussed in that paper are described by 2 parameters, α and β, which must

satisfy α < β ≤ 1. (Classical TCP has α = −1, β = 1). It was suggested that choosing

a value α > 0 runs a risk of leading to instabilities due to the delay of one Round Trip

Time (RTT) in the feedback in the Internet.

In the language of [8], it is proven in [9] that if β < 1 the Ornstein–Uhlenbeck process

is a good model for congestion window behavior of TCP flows following the suggested con-

gestion avoidance policy. This analysis does not take delay in the feedback into account.

This result gives additional support to the conjecture that in the class of congestion avoid-

ance algorithms discussed we must, for stability, have α ≤ 0 (or possibly, with carefull
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implementations, α > 0 but quite small).

In the model used in [9] drop probability or marking probability of packets is constant,

independent of the current congestion window. In a more refined analysis, see e.g. [10],

the drop probability becomes dependent on the current value of the congestion window.

In an even more sophisticated analysis (still to be done) the marking probability becomes

dependent of the congestion window of 1 RTT ago, thus leading to delay in the feedback.

Exponential smoothing can occur, for example, when routers use exponential smoothing

of queuelengths in setting drop probabilities in Random Early Detection, see e.g. [11].

3 The Nyquist Stability Criterion

For the Nyquist stability criterion we first map the imaginary axis to the complex plane,

using the map φT,c(·) respectively φT,c,λ(·). Then we find crossings of the real axis, i.e.

values of y for which (e.g.) φT,c(iy) has zero imaginary part. One such point is y = 0.

If y = 0 is the only such point then there is no winding around zero and the system is

stable. If there are more such points we check what the real part of φT,c(iy) is in those

points. If this is always positive there still is no winding around zero and the system is

still stable. If for some of those points y the real part of φT,c(iy) is negative we need to

check that there is indeed a winding (without winding back), and if there is the system

is unstable.

For both φT,c(iy) and φT,c,λ(iy), the condition that the imaginary part is zero is that

y = c sinTy. (3.1)

If

0 ≤ cT ≤ 1 (3.2)
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y = 0 is the only crossing of the real axis, so that the system must be stationary. It is

easily verified that for

1 < cT <
π

2
(3.3)

the contour generated by φT,c(·) has a second (double) crossing of the real axis, but this

crossing has positive real part so that the winding number of zero still is zero. For larger

values of cT there are crossings of the real axis left of zero, and indeed the winding number

becomes positive.

For the function φT,c,λ(·) a sufficient condition for the winding number of zero to be

zero is that for every solution y0 to

y0 = c sinTy0 (3.4)

we have

y2
0 < λc cosTy0. (3.5)

If (2.2) holds, y = 0 is the only solution to (2.1) and the system is stable. It is not hard

to check that if

1 < cT < θ(λT ) (3.6)

there is a second (double) crossing of the real axis, but this crossing is to the right of zero

and the winding number of zero is still zero. For larger values of cT there are crossings

of the real axis left of zero, and the winding number becomes positive. More insight is

obtained from the following observation: Let y0 be the smallest positive solution to (2.4).

This solution exists if and only if Tc > 1, and in that case 0 < Ty0 < π. If 0 < Ty0 <
π
2

(2.5) holds for all sufficiently large values of λ (and for those values of λ the system is

stable), while if Ty0 ≥ π
2

(2.5) does not hold for any positive value of λ and the system is

unstable for all values of λ.

For both functions φT,c(·) and φT,c,λ(·) determining the actual number of zeros right of

the imaginary axis when the system is not stable is actually easier if we use the method of
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the sections 3 - 6. That method also makes it possible to determine the actual positions

of the zeros, and thus leads to (1.26) - (1.42).

4 The zeros of φ(z)

In this section we study the locations of the zeros of the function φ(·) in (1.25). In the

next section we will use these results to complete the proof of theorem 3. The proofs of

the theorems 1, 3 and 4 will be given in section 5.

Let z = x + iy, so that

φ(z) = z + e−Tz = x+ iy + e−Tx(cosTy − i sinTy) =

= (x+ e−Tx cosTy) + i(y − e−Tx sin Ty) . (4.1)

Next, we will find the zeros of φ(·). We may have “special zeros” in the solutions to

y = 0 , e−Tx = −x. (4.2)

and also in the solutions to

x = 0 , cosTy = 0 , y = sinTy . (4.3)

More general, φ(z) = 0 is the same as

e−Tx cosTy = −x , (4.4)

e−Tx sinTy = +y . (4.5)

(3.4), (3.5) are equivalent to:

e−2Tx = x2 + y2 , (4.6)

x. sinTy = −y. cosTy, orx = − y

sin Ty
cosTy = − y

tan(Ty)
, (4.7)
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AND y and sinTy have the same sign. (4.8)

The last constraint means that apart from the possible special zeros on the lines y = 0

and x = 0 only solutions to (3.6), (3.7) for which also

2kπ

T
< |y| < (2k + 1)π

T
(4.9)

for some integer k ≥ 0 are indeed zeros of the function φ(·).

Because of (3.7) it more convenient to work with r = Tx and s = Ty. (3.7) now

becomes

r = − s

tan(s)
, (4.10)

and (3.6) becomes

T 2e−2r = r2 + s2. (4.11)

r = Tx as function of s = Ty in (3.10) is shown in figure 3. Because of (3.9) only

points on branches with 2kπ < |s| < (2k + 1)π are candidates for zeros of φ(·). In later

plots we will supress the “forbidden branches”.

(3.11) we rewrite as

s = ±
√
T 2e−2r − r2. (4.12)

This curve always passes through (r = 0, s = ±T ). We will concentrate on (3.12) with

the “+” sign

For a given value of r there is a corresponing value of s in (3.12) if and only if Te−r ≥ |r|.
We will investigate values of r for which Te−r = |r|.

Let r0 = r0(T ) denote the unique solution to

Te−r = r . (4.13)

Clearly, r0(T ) exists and is unique and positive for all T > 0, see figure 4.
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Figure 3: r as function of s: r = −s/ tan(s)

(3.12) requires that we only consider r ≤ r0(T ).

Next we consider the equation

Ter = r. (4.14)

It is clear (see figure 5) that for 0 < T < 1
e

there are exactly two solutions r1, r2 to (3.14)

with

0 < r1 < Te < 1 < r2. (4.15)

For T = 1
e

there are two coinciding solutions r1 = r2 = 1, and for T > 1
e

there are no

solutions to (3.14).

We can now derive most results on the zeros of φ(·) by drawing in one figure r as

function of s from (3.10) as well as s as function of r from (3.12). In figure 6 this is done

for T = 10, i.e. 3π < T < 7
2
π. In figure 7 this is done for T = π

2
= 1.570796327. In figure

17
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s=r

s=T e^-r

Figure 4: r0 = x0 T

8 this is done for T = .4, i.e. 1
e
< T < π

2
. In figure 9 this is done for T = 1

e
= .3678794414.

Finally, in figure 10 this is done for T = .33 < 1
e
.
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Figure 5: −r1 and −r2 are the dominating singularities in the r-s plane
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Figure 6, T=10

Figure 6: Four singularities right of the imaginary axis
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Figure 7: Two singularities on the imaginary axis
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Figure 8: All singularities left of the imaginary axis
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Figure 9: A pole of order two in r = −1
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Figure 10: Two distinct real simple poles left of the imaginary axis

In figure 6 there are 4 singularities with positive real part, so the system is unstable.

All other singularities are left of the imaginary axis. In figure 7 there are two singularities

on the imaginary axis, so the system is (marginally) unstable. In the figures 8, 9 and

10 the dominating singularities all have negative real part and the systems are stable.

In figure 8 these dominating singularities are a complex conjugate pair. In figure 9 the

dominating singularity is real and of order two. In figure 10 the dominating singularity,

and also the “next to dominating” singularity, are real.

The reader is now easily able to fill in the details of the proof of (1.26) - (1.28) and

(1.37) - (1.39). Next we prove (1.29), (1.30).

Clearly, if uk < 0 then (2k + 1
2
) π

T
< vk < (2k + 1) π

T
, if uk = 0 then vk = (2k + 1

2
) π

T
,

while if uk > 0 indeed 2k π
T
< vk < (2k + 1

2
) π

T
. Hence

e+2Tuk = v2
k + u2

k ≥ v2
k >

(

2kπ

T

)2

, (4.16)
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so that

uk >
1

T
log

(

2kπ

T

)

for all k. (4.17)

Moreover, for k large, the lines

x = − y

tan Ty
,

2kπ

T
< y <

(2k + 1)π

T
, (4.18)

become more and more identical to the lines “y =
(2k+ 1

2
)π

T
”, so that

(

(2k + 1
2
)π

T
− vk

)

↓ 0 for k → ∞ , (4.19)

(

uk −
1

T
log

2kπ

T

)

↓ 0 ,

(

uk −
1

T
log

(2k + 1
2
)π

T

)

→ 0 for k → ∞. (4.20)

Finally,
vk

uk

= tan Tvk = tan(Tvk − 2kπ), (4.21)

Tvk − 2kπ = arctan
vk

uk

∼ π

2
− uk

vk

, (4.22)

(2k +
1

2
)π − Tvk ∼ uk

vk

∼ log
(2k+ 1

2
)π

T

(2k + 1
2
)π

for k → ∞. (4.23)

This proves (1.27)-(1.30). (1.31) is an easy extension of the results above. Of theorem 3

we have proven all but (1.41) etc.

5 The function fT (·).

In this section we complete the proof of theorem 3.

Clearly, (z + e−zT )−1 =
∑∞

k=0 (−1)k e−kTz

zk+1 is the Laplace Transform of

fT (x) =

b x
T
c

∑

k=0

(−1)k (x− kT )k

k!
. (5.1)
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Hence, also

fT (x) = lim
a→∞

1

2πi

∫ c+ia

c−ia

e+zx

(z + e−zT )
dz, (5.2)

as long as the line (c− i∞, c+ i∞) passes to the right of all zeros of (z + e−zT ). For that

it clearly is sufficient to require c ≥ x0 as in (3.13).
y

x

Figure 11

x0

y0

-x1

-y0

Figure 11: The contour of integration

Using the contour described in figure 11 with x0 = r0

T
, r0 as in (3.13), y0 = 1

T
(2k− 1

2
)π

(k integer) and (e.g.)

(log y0) << x1 << y0 , (5.3)

(for example x1 =
√
y0 =

√

1
T

(2k − 1
2
)π), we see that as long as x+ T > 0,

fT (x) = lim
n→∞

(sum of residues in (−uj ± ivj) with |vj| < (2n− 1)π). (5.4)

For T > 1
e

this yields

fT (x) = lim
n→∞

n
∑

k=0

(

ex(−uk+ivk)

1 + T exp{−T (−uk + ivk)}
+

ex(−uk−ivk)

1 + T exp{−T (−uk − ivk)}

)

. (5.5)
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After some straightforward arithmetic this yields (1.41).

Remark 3.1. For 0 < T < 1
e
, the same proof leads to

fT (x) = e−xR

1+T R
+ e−x NR

1+T NR

+
∑∞

k=1
2e−ukx√

(Tuk−1)2+(Tvk)2
sin(vkx− ψk). (5.6)

For T = 1
e

we get (R = NR = 1
T

= e)

fe(x) = exp{−xe}

+
∑∞

k=1
2e−ukx√

(Tuk−1)2+(Tvk)2
sin(vkx− ψk). (5.7)

This completes the proof of theorem 3.

6 The proof of theorem 4.

(1.43) and (1.44) have already been proven. For the covariance function C(t) we therefore

have: if t ≥ 0,

C(t) = b2
∫ ∞

0
fcT (cτ)fcT (c(τ + t))dτ. (6.1)

To get actual values for C(·), we use a very different method.

First, since E[Y (t)] = 0,

C(t) = E[Y (τ)Y (τ + t)] , (6.2)

and hence

C(t+ ∆) − C(t) = E[Y (τ)∆(Y (τ + t + ∆) − Y (τ + t))]

∼ E[Y (τ)(−cY (τ + t− T ) + b(X(τ + t+ ∆) −X(τ + t)))]. (6.3)
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Hence, for t > 0:
d

dt
C(t) = −cC(t− T ), (6.4)

even if 0 < t < T .

We will prove that

C(T ) =
b2

2c
. (6.5)

Before proving (6.5) we will use it to prove theorem 4:

(5.4) and (6.5) (and C(t) = C(|t|)) determine C(·). For 0 < t < T , (5.4) translates

into
d

dt
C(t) = −cC(t− T ) = −cC(T − t), (6.6)

i.e. for |t| < 1
2
T :

d

dt
C(

1

2
T + t) = −cC(

1

2
T − t). (6.7)

Setting

C(
1

2
T + t) =

∞
∑

k=0

akt
k, (6.8)

we get

d

dt
C(

1

2
T + t) =

∑∞
k=1 kakt

k−1 = −cC(1
2
T − t)

= −c∑∞
k=0 ak(−t)k, (6.9)

ak = (−1)k cak−1

k
if k ≥ 1. (6.10)

The solution to (6.10) is:

ak =











− ck

k!
a0 if k = 1mod 4 ork = 2mod 4,

+ ck

k!
a0 if k = 0mod 4 ork = 3mod 4,

(6.11)

i.e. for |t| < T
2
:

C(
1

2
T + t) = a0(cos(ct) − sin(ct)). (6.12)
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t = 1
2
T and (6.5) then yield

a0 =
b2

2c
· 1

cos
(

cT
2

)

− sin
(

cT
2

) =
b2

2c
√

2
· 1

cos
(

π
4

+ cT
2

) . (6.13)

Combining (6.12) and (6.13) now proves (1.46).

Next, we give a “handwaving” proof of (6.5). A formal proof will be given in Appendix

B.

d(Y (t))2 = 2Y (t)dY (t) + (dY (t))2

= 2Y (t)(−cY (t− T )dt+ bdX(t))

+(c2(Y (t− T ))2(dt)2 − 2bcY (t− T )(dt)(dX(t))

+b2(dX(t))2)

= −2cY (t)Y (t− T )dt+ 2bY (t)dX(t)

+c2(Y (t− T ))2(dt)2 − 2bcY (t− T )(dt)(dX(t))

+b2(dX(t))2 . (6.14)

Taking expected values we get

0dt = −2cC(T )dt+ 0(dt) + 0 − 0 + b2dt, (6.15)

which “proves” (6.5). A more formal proof will be given in Appendix B.

7 The proof of theorem 2.

To prove the results for the process Yλ(·) we have to locate the zeros of the function

φT,c,λ(z) = z +
λce−Tz

λ+ z
. (7.1)
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Again, let z = x+ iy.

z2 + λz + λce−Tz = (x+ iy)2 + λ(x+ iy) + λce−Tx(cosTy − sin Ty) =

= (x2 − y2 + λx + λce−Tx cosTy)

+i(2xy + λy − λce−Tx sinTy). (7.2)

For this to be zero we need

λce−Tx cosTy = y2 − x2 − λx = y2 − x(λ + x), (7.3)

λce−Tx sin Ty = λy + 2xy = y(λ+ 2x). (7.4)

As in (3.2) etc. we may have “special zeros” to worry about. These occur when either

y = 0 (7.5)

and at the same time

λce−Tx = −x2 − λx = −x(λ + x) (7.6)

or

λ+ 2x = 0, T y = kπ for some integer k, (7.7)

and at the same time

λce
λT
2 = (−1)k(k2π2 +

λ2

4
). (7.8)

More general, φT,c,λ(z) = 0 is the same as

(λc)2e−2Tx = (y2 − x(λ + x))2 + y2(λ+ 2x)2, (7.9)

sinTy

cosTy
=

y(λ+ 2x)

y2 − x(λ+ x)
, (7.10)

AND
sin Ty

y
and (λ+ 2x) have the same sign. (7.11)

Zeros on the line x = 0 can occur but do not need special attention.
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If we ever were to find a simple zero of the function in (6.2) in the point (x = −λ, y = 0)

it would not be a zero of the function φT,c,λ(·).

(6.8) can occur only when k is even, and in that case we will find the zero by an

investigation of (6.9) - (6.11). (6.6) can not occur for x ≥ 0, but for cT small enough

and/or λT large enough (6.6) may have two solutions in (−∞, 0).

(6.10) can be used to write x as function of y:

x2 +

(

λ+
2y

tan Ty

)

x− y2 +
λy

tan Ty
= 0, (7.12)

x1,2 =
−(λ+ 2y

tan(Ty))±
√

(λ+ 2y

tan(Ty))
2
+4(y2− λy

tan(Ty))
2

= −λ
2
− y

tan(Ty)
± y

sinTy

√

1 +
(

λ sinTy

2y

)2
. (7.13)

The two “±” signs in (6.13) are the same only “half the time”. With r = Tx, s = Ty we

rewrite (6.13) as

r = −λT
2

− s

tan(s)
± s

sin s

√

√

√

√1 +

(

λT sin s

2s

)2

. (7.14)

A plot of (6.14) with λT = 5 is shown in figure 12 , with the plot for the branches with

a “+” sign slightly fatter than for the “−” sign. It is easily shown that on all branches

where s > 0 r is an increasing function of s. It also is easily shown that for k even, k 6= 0,

lim
s→kπ





− s

tan(s)
+

s

sin s

√

√

√

√1 +

(

λT sin s

2s

)2




 = 0 , (7.15)

while for k odd

lim
s→kπ





− s

tan(s)
− s

sin s

√

√

√

√1 +

(

λT sin s

2s

)2




 = 0 . (7.16)
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Figure 12: r as function of s in (6.14). Fatter branches are those with “+”.

In both cases it does not matter whether the limit is from the left or from the right. Thus,

we see that points of the branches where in (6.14) the “−” sign was used always violate

(6.11). For y → 0 we get

−λ
2

< limy→0

(

−λ
2
− y

tan(Ty)
+ y

sinTy

√

1 +
(

λ sinTy

2y

)2
)

= −λ
2
− 1

T
+ 1

T

√

1 + (λT
2

)2 < 0 , (7.17)

where again it does not matter whether the limit is from the left or from the right. Thus,

we see that the points (x, y) for which (6.10) and (6.11) hold are exactly the curves in the

last expression in (6.13) with the “+” sign (the fatter branches in figure 12):

x = −λ
2
− y

tan(Ty)
+

y

sin Ty

√

√

√

√1 +

(

λ sinTy

2y

)2

. (7.18)

Henceforth, we will suppress in our plots the branches where the “±” in (6.14) is a “−”.
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The branches (6.18) cross the y-axis for values of y for which

λ

2
+

y

tan(Ty)
=

y

sin Ty

√

1 + (
λ sinTy

2y
)2. (7.19)

It is easily seen that this is for y a solution to

Ty tan(Ty) = λT. (7.20)

The smallest positive value of y for which x = 0 therefore is

y =
1

T
q(λT ), (7.21)

where the function q(·) is as in (1.6)

In (6.9) we can write y2 as function of x:

y4 + (λ2 + 2λx+ 2x2)y2 + x2(λ+ x)2 − (λc)2e−2Tx = 0, (7.22)

y2 =
−(λ2+2λx+2x2)±

√
(λ2+2λx+2x2)2+4((λc)2e−2Tx−x2(λ+x)2)

2
=

−((λ+x)2+x2)±
√

λ2(λ+2x)2+4λ2c2e−2Tx

2
. (7.23)

In (6.23), only the “+” sign can lead to non-negative values for y2, and even then we get

y2 ≥ 0 only if

λ2c2e−2Tx ≥ x2(λ+ x)2. (7.24)

Hence, we have

y2 =
−((λ+ x)2 + x2) +

√

λ2(λ+ 2x)2 + 4λ2c2e−2Tx

2
, (7.25)

where x is restricted to the range for which (6.14) holds. This range certainly includes

[0, x0], where x0 is the unique positive solution to

λce−Tx = x(λ+ x), (7.26)
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(there may also be up to two negative solutions to (6.26), see (6.35) etc.). No x > x0 is

in this range, see figure 13 . On that range we have

y = ±

√

√

√

√

λ
√

(λ+ 2x)2 + 4c2e−2Tx − ((λ+ x)2 + x2)

2
. (7.27)

With r = Tx and s = Ty (6.27) becomes

s = ±

√

√

√

√

λT
√

(λT + 2r)2 + 4(cT )2e−2r − ((λT + r)2 + r2)

2
. (7.28)

The properties of the functions in (6.27), (6.28) that matter most are that for x on

[0, x0] y
2 is a strictly decreasing function of x (check by differentiating), and that

y2 ∼ 2cλeT |x| for x ↓ −∞. (7.29)
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It must be noted that (6.27) yields y = 0 whenever

λce−Tx = |x(λ+ x)|, (7.30)

but a solution to (6.20) produces a zero of the function in (6.2) only when (6.6) holds.

Thus, of the at most 5 solutions to (6.20) at most 2 produce zeros of φT,c,λ(·), and those

(if any) are the two negative solutions to (6.6).

For x = 0, (6.25) yields

y2 =
λ

2
(

√

1 + 4
c2

λ2
− 1) > 0. (7.31)

Plots of r as function of s from (6.14) (using the “+” sign only) and of s as function

of r (from (6.28)) are superimposed in the figures 14 etc. . We see that all zeros of the

function φT,c,λ(·) have strictly negative real part if and only if

λ2(

√

1 + (
2c

λ
)2 − 1) < 2(

q(λT )

T
)2 (7.32)

It is easily seen that this is equivalent to (1.10).

The remainder of the proof of theorem 2 is similar to that of theorem 1, and is left to

the reader.
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Figure 14: cT = .5 λT = 5: Stable.

It is possible to derive more detailed information about the functions in (6.27), (6.28).

For example, if

cT <
2

λT





√

1 + (
λT

2
)2 − 1



 exp







√

1 + (
λT

2
)2 − 1 − λT

2







(7.33)

then the function φT,c,λ(·) has two real zeros −R and −NR with

0 < R <
λ

2
− 1

T





√

1 + (
λT

2
)2 − 1



 < NR < λ. (7.34)

If “=” holds in (6.33) then φT,c,λ(·) has a double zero in (z = −λ
2

+ 1
T
(
√

1 + (λT
2

)2 − 1)),

and if “>” holds in (6.33) then φT,c,λ has no real zeros.

We get (1.26), (1.27) and (1.32), (etc.) back by letting λ→ ∞ in (6.33).

Similarly, let

h(z) = λce−Tz − z2 − λz. (7.35)
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Figure 15, c*T=2, lambda*T=0.5

Figure 15: cT = 2 λT = .5: Unstable.

Clearly, h(·) always has one positive zero x0 which is shown in figure 13. In addition,

if

cT <
2

λT



1 +

√

1 + (
λT

2
)2



 exp







−
√

1 + (
λT

2
)2 − 1 − λT

2







(7.36)

then h(·) has two additional real zeros −Q and −NQ with

λ < Q <
λ

2
+

1

T



1 +

√

1 + (
λT

2
)2



 < NQ. (7.37)

If “=” holds in (6.36) then h(·) has a double zero in −λ
2
− 1

T

(

1 +
√

1 + (λT
2

)2
)

. If “>”

holds in (6.36) then x0 is the only real zero of h. The zeros of h are not zeros of the

function φT,c,λ(·), but they are points where y2 = 0 in (6.25).
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A Rewriting (1.23)

The re-writing of (1.23) uses the fact that

∫ x

kT
(y − kT )k(x− y)k−1e−λ(x−y)dy =

∞
∑

j=0

(−λ)j

j!

∫ x

kT
(y − kT )k(x− y)k+j−1dy =

∞
∑

j=0

(−λ)j

j!
(x−kT )2k+j

∫ 1

0
uk(1−u)k+j−1du =

∞
∑

j=0

(−λ)j

j!
(x−kT )2k+j k!(k + j − 1)!

(2k + j)!
, (A.1)

and uses the identity

∞
∑

j=0

(j + 1)(j + 2) . . . (j + k − 1)

(2k + j)!
xj =

(

d

dx

)k−1 ∞
∑

j=0

xk+j−1

(2k + j)!
=

(

d

dx

)k−1 ∞
∑

n=k−1

xn

(k + n + 1)!
=

(

d

dx

)k−1 ∞
∑

n=0

xn

(k + n + 1)!
=

(

d

dx

)k−1 (
1

xk+1

∞
∑

n=0

xk+n+1

(k + n+ 1)!

)

=

(

d

dx

)k−1




1

xk+1

∞
∑

j=k+1

xj

j!



 =

(

d

dx

)k−1




1

xk+1

∞
∑

j=0

xj

j!
− 1

xk+1

k
∑

j=0

xj

j!



 =

(

d

dx

)k−1




ex

xk+1
− 1

xk+1

k
∑

j=0

xj

j!



 =

k−1
∑

j=0







k − 1

j











(

d

dx

)j
1

xk+1









(

d

dx

)k−1−j

ex



−
k
∑

j=0

1

j!





(

d

dx

)k−1
1

xk−j+1



 , (A.2)

etc.

B The proof of (6.5)

By (1.3) we have, if 0 < t2 − t1,

(Y (t2))
2 − (Y (t1))

2 = (Y (t2) − Y (t1))(2Y (t1) + (Y (t2) − Y (t1))) =
(

−c
∫ t2−T

t1−T
Y (u)du+ b(X(t2) −X(t1))

)(

2Y (t1) − c
∫ t2−T

t1−T
Y (u)du+ b(X(t2) −X(t1))

)

.

(B.3)
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Choose 0 < t2 − t1 < T . Assuming stationarity and taking expected values yields

0 = −2cE[Y (t1)
∫ t2−T

t1−T
Y (u)du] + c2E[(

∫ t2−T

t1−T
Y (u)du)2] + b(t2 − t1). (B.4)

Dividing by (t2 − t1) and then letting t2 ↓ t1 proves the result.
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